Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Au and Pt do not form homogeneous bulk alloys as they are thermodynamically not miscible. However, we show that anodic TiO nanotubes (NTs) can in situ be uniformly decorated with homogeneous AuPt alloy nanoparticles (NPs) during their anodic growth. For this, a metallic Ti substrate containing low amounts of dissolved Au (0.1 atom %) and Pt (0.1 atom %) is used for anodizing. The matrix metal (Ti) is converted to oxide, whereas at the oxide/metal interface direct noble metal particle formation and alloying of Au and Pt takes place; continuously these particles are then picked up by the growing nanotube wall. In our experiments, the AuPt alloy NPs have an average size of 4.2 nm, and at the end of the anodic process, these are regularly dispersed over the TiO nanotubes. These alloyed AuPt particles act as excellent co-catalyst in photocatalytic H generation, with a H production rate of 12.04 μL h under solar light. This represents a strongly enhanced activity as compared to TiO NTs decorated with monometallic particles of Au (7 μL h) or Pt (9.96 μL h).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b03713DOI Listing

Publication Analysis

Top Keywords

tio nanotubes
12
alloyed aupt
8
anodic growth
8
aupt alloy
8
forming highly
4
highly active
4
active homogeneously
4
homogeneously alloyed
4
aupt
4
aupt co-catalyst
4

Similar Publications

A CuBiO/TiO p-n Heterojunction for Enhancing the Barrier Protection of a Nickel-Based Layer on the Magnesium Alloy.

J Phys Chem Lett

September 2025

Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.

Herein, CuBiO microspheres were first deposited on TiO nanotube arrays to develop a p-n CuBiO/TiO heterojunction by a facile hydrothermal protocol. The variations in the photoinduced open-circuit potential, photocurrent, and electrochemical parameters of the nickel-plated magnesium alloy (Mg/Ni) demonstrated the remarkably strengthened photoelectrochemical efficiency and photocathodic protection (PCP) capability caused by the CuBiO modification. This enhancement is attributed to establishing a built-in electric field and intensified light absorption in a broadened wavelength spectrum, confirmed by the valence band XPS and ultraviolet-visible spectra.

View Article and Find Full Text PDF

Design of passive coding RFID sensor tags for smart agriculture based on RGO-TiO-SWCNT electrode.

Mikrochim Acta

September 2025

College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.

A passive coding monopod antenna sensor (RFID) tag based on a composite material of titanium dioxide (TiO)/single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (RGO) is studied. This sensor can be used to precisely measure light intensity and carbon dioxide concentration. Under the illumination of light with an intensity ranging from 4 to 18.

View Article and Find Full Text PDF

Titanium (Ti) and Ti alloy are the most widely used implant metals, but the limited bioactivity hinders the further clinical application. Aiming to enhance their osteogenesis, dual biomimetic strategies were utilized to decorate the surface of Ti by topological and biochemical cues. Firstly, a series of concentric circles with TiO nanotubes on Ti were fabricated by photolithography and anodic oxidation.

View Article and Find Full Text PDF

In this work, TiO anatase nanotubes (NTs) were synthesized using a straightforward, two-step anodic oxidation method. To tackle with the optical and electrical properties of the material, a thin layer of tantalum was sputtered onto the nanotube surface. The microstructure of the modified material was analyzed using scanning and transmission electron microscopy (SEM and TEM), while changes in chemical bonding were examined by utilizing X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Due to their outstanding physicochemical properties, carbon nanotubes (CNTs) have been widely studied and applied in the nanoscience and nanotechnology fields. Herein, Fe-based catalysts were prepared by the impregnation method using AlO, SiO, ZrO, TiO and SnO supports and were used for CNT synthesis from -hexane under different reaction times and temperatures. It was found that the metal-support interaction and FeO particle size of Fe-based catalysts regulated CNT growth.

View Article and Find Full Text PDF