98%
921
2 minutes
20
Monitoring the ratio of 40- and 42-residue amyloid β peptides (i.e., Aβ40 and Aβ42) in human plasma is considered one of the hallmarks of detection of the early stage of Alzheimer's disease (AD). Therefore, development of a specific, yet non-antibody-based method for simultaneous detection of Aβ40 and Aβ42 may have considerable clinical applications. Here, we developed a 'nanoparticle-based colorimetric sensor array' utilizing label-free gold and silver nanoparticles for visual detection of Aβ42 and Aβ40. Different aggregation behaviors of nanoparticles through their conjugation with Aβ42 and Aβ40 followed by the coordination of Aβ42 and Aβ40 with Cu(ii) led to diverse spectral and color changes. The spectral changes were quantitatively differentiated by a supervised pattern recognition approach, linear discriminant analysis (LDA). The proposed sensor array was able to discriminate among Aβ42, Aβ40, and HSA in different concentrations (50 nmol L-1 to 500 nmol L-1) and their mixtures. Moreover, the sensor array had the capability to identify structurally similar Aβ peptides in human plasma samples. The developed sensor array technology might pave the way for a cheap and rapid, yet robust, platform for high-throughput screening of human plasma for defining the at-risk population for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/C8NR00195B | DOI Listing |
Nano Lett
September 2025
School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China.
Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510641, China.
Recently, flexible airflow sensors have attracted significant attention due to their impressive characteristics and capabilities for airflow sensing. However, the development of high-performance flexible airflow sensors capable of sensing airflow over large areas remains a challenge. In this work, it is proposed that a hair-like flexible airflow sensor, based on laser direct writing and electrostatic flocking, offers an efficient technology for airflow sensing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan.
Chemical sensor arrays mimic the mammalian olfactory system to achieve artificial olfaction, and receptor materials resembling olfactory receptors are being actively developed. To realize practical artificial olfaction, it is essential to provide guidelines for developing effective receptor materials based on the structure-activity relationship. In this study, we demonstrated the visualization of the relationship between sensing signal features and odorant molecular features using an explainable AI (XAI) technique.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Chemical and Biomolecular Engineering Dept, University of California, Los Angeles, Los Angeles, California 90095, United States.
Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
Molybdenum disulfide (MoS) has recently emerged as a promising material for the development of triboelectric nanogenerators (TENGs) owing to its inherently negative triboelectric properties when paired with polymeric layers, along with its notable transparency and mechanical flexibility. However, MoS-based TENGs operating in the contact-separation mode encounter critical limitations, including mechanical wear and limited triboelectric performance, particularly within the constraints of conventional 2D geometries. This paper reports the novel one-step laser-assisted synthesis of hemispherical MoS through the controlled nucleation and growth of MoS precursor seeds.
View Article and Find Full Text PDF