Background: The detection of metal ions represents a critical analytical challenge due to their persistent environmental accumulation and severe toxic effects on ecosystems and human health. Even at trace concentrations, toxic metal ions can cause irreversible biological damage, necessitating the development of sensitive, selective, and rapid monitoring platforms. Advanced detection systems are urgently needed for environmental surveillance, industrial effluent control, and food/water safety applications where regulatory compliance and early warning capabilities are paramount.
View Article and Find Full Text PDFAs a naturally occurring reducing and oxidizing agent, hydrogen peroxide (HO) has a role in several biotic and abiotic processes. Hence, the onsite, precise, and rapid determination of HO is crucial. Herein, we propose a method for colorimetric detection of HO on the basis of hindered formation of gold/silver core/shell nanoparticles.
View Article and Find Full Text PDFDue to the expansion of the aquaculture industry in the world and the importance of controlling ammonia in fish breeding water, high levels of which impose significant damage to fish farming, it is crucial to develop affordable, rapid, and on-site methods for timely and accurate detection of ammonia. In this study, a colorimetric sensor based on the formation of gold/silver core/shell nanorods (NRs) was developed for the rapid detection of ammonia. The sensor functioned by the specific dissolution of silver(i) oxide by ammonia, which triggered the activation of silver ions and the subsequent formation of gold/silver core/shell NRs in the presence of a reducing agent (, ascorbic acid (AA)).
View Article and Find Full Text PDFThe synthesis of noble metal nanostructures with adjustable optical properties is essential due to their potential applications in various fields such as imaging, (bio) sensors, and catalysis. In this study, Au@Ag core-shell nanorods were synthesized with tunable optical properties. The synthesis process includes a two-stage approach: first, gold nanorods were synthesized through seed-mediated growth, and in the second stage, these gold nanorods were used as seeds to synthesize Au@Ag core-shell nanorods through the silver deposition process.
View Article and Find Full Text PDFThe use of pesticides plays an essential role in improving crop quality and yield, however, it causes air, water, and soil pollution and the residue of these pesticides in agricultural products threatens the ecosystem and human life. Therefore, it is highly desirable to develop rapid, simple, and cost-effective methods for regular monitoring of pesticide residues in agricultural products especially strawberry that is consumed fresh and unpeeled. In this study, gold nanoparticles (AuNPs) of varying sizes have been exploited as sensing units to design a non-enzymatic colorimetric sensor array for the detection and discrimination of various pesticides including; bifenazate (BF), paraquat (PQ), diazinon (DZ), thiometon (TM), and carbendazim (CD) and chlorpyrifos (CP).
View Article and Find Full Text PDFThe oxidation state of an element significantly controls its toxicological impacts on biological ecosystems. Therefore, design of robust sensing strategies for multiplex detection of species with respect to their oxidation states or bonding conditions, i.e.
View Article and Find Full Text PDFAnal Chim Acta
January 2023
Paper-based analytical devices (PADs) have shown great promise for point-of-care testing and on-site detection of analytes with chemical, biochemical, and environmental importance owing to their low cost, convenience, scalability, portability, and biocompatibility. The World Health Organization stated that sensors should meet the ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable). Paper-based optical sensors meet most of these criteria, making them in high demand and applicable in remote areas.
View Article and Find Full Text PDFVisual detection based on gold nanorods (AuNRs) has gained tremendous attention in sensing applications owing to the potential for simple, inexpensive, instrument-free, and on-site detection. The proper selection of the mechanism involved in the interaction between the analyte and the nanostructure plays a significant role in designing a selective and multicolorimetric probe for visual purposes. A winning mechanism to develop multicolorimetric probes is the silver metalization of AuNRs.
View Article and Find Full Text PDFThe excessive presence of nitrite and nitrate in environmental matrixes has raised concerns among the scientific communities due to their negative impacts on human health and living organisms. Considering the necessity of regular monitoring and rapid evaluation of nitrite and nitrate, it is of great interest to develop methods capable of on-site detection of these compounds. This study presents a non-aggregation colorimetric method based on etching gold nanorods (AuNRs) for visual detection of nitrite and nitrate.
View Article and Find Full Text PDFBiogenic amines (BAs) are known as substantial indicators of the quality and safety of food. Developing rapid and visual detection methods capable of simultaneously monitoring BAs is highly desired due to their harmful effects on human health. In the present study, we have designed a multicolor sensor array consisting of two types of gold nanostructures (i.
View Article and Find Full Text PDFIn this work, a colorimetric sensor array has been designed for the identification and discrimination of thiometon (TM) and phosalone (PS) as organophosphate pesticides and prothioconazole (PC) as a triazole pesticide. For this purpose, two different plasmonic nanoparticles including unmodified gold nanoparticles (AuNPs) and unmodified silver nanoparticles (AgNPs) were used as sensing elements. The principle of the proposed strategy relied on the aggregation AuNPs and AgNPs through the cross-reactive interaction between the target pesticides and plasmonic nanoparticles.
View Article and Find Full Text PDFFood Chem Toxicol
March 2021
Irregular and unknowingly use of chemical compounds is a serious threat to the environment, human health, and other living organisms attributable and intensified by the growing population and increasing demand for food. Nitrite and nitrate are among those compounds that are widely used in agricultural and industrial products. Therefore on-site, rapid, simple, and accurate monitoring of nitrite/nitrate is highly desirable.
View Article and Find Full Text PDFGreat attention has been directed towards developing rapid and straightforward methods for the identification of various pesticides that are usually used simultaneously in citrus fruits. The extensive use of diverse classes of pesticides in citrus fruits and their high toxicity may cause serious diseases in the human body. In the current study, a non-enzymatic sensor array has been developed for the identification and discrimination of five different pesticides belonging to diverse classes, including organophosphate, carbamate, and bipyridylium.
View Article and Find Full Text PDFChiral discrimination has always been a hot topic in chemical, food and pharmaceutical industries, especially when dealing with chiral drugs. Enantiomeric recognition not only leads to better understanding of the mechanism of molecular recognition in biological systems, but may further assist in developing useful molecular devices in biochemical and pharmaceutical studies. By emerging nanotechnology and exploiting nanomaterials in sensing applications, a great deal of attention has been given to the design of optical nanoprobes that are able to discriminate enantiomers of chiral analytes.
View Article and Find Full Text PDFIt is becoming increasingly accepted that various diseases have a capacity to alter the composition of plasma proteins. This alteration in protein composition may consequently change the targeting capacity of nanoparticles (NPs). In this study, the impact of a model targeting ligand's (i.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2020
Detection of pentaerythritol tetranitrate (PETN) as an explosive has been of great interest because of public safety and military concerns. Here, we have presented a simple, selective and sensitive colorimetric method for direct detection of PETN. The gold nanoparticles (AuNPs) were first exposed to arginine which has primary amines in its structure.
View Article and Find Full Text PDFSignal generation techniques for visual detection of analytes have received a great deal of attention in various sensing fields. These approaches are considered to be advantageous when instrumentation cannot be employed, such as for on-site assays, point-of-care tests, and he althcare diagnostics in resource-constrained areas. Amongst various visual detection approaches explored for non-invasive quantitative measurements, ratiometric fluorescence sensing has received particular attention as a potential method to overcome the limitations of intensity-based probes.
View Article and Find Full Text PDFDetection of nitroaromatic explosives is of strong concern because of human health, public safety, environment, and military issues. In this study, we present a ratiometric sensor array for detection and discrimination of widely-used nitroaromatics (i.e.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common type of neurodegenerative amyloid disorder causing progressive cognitive decline and memory loss. A considerable number of therapies for AD rely on inhibition/delay/dissociation of amyloid beta (Aβ) oligomers and fibrils. In this case, nanoparticles (NPs) demonstrated substantial effects on the Aβ fibrillation process; however, their effects on progressive cognitive decline and memory have been poorly investigated in vivo.
View Article and Find Full Text PDFOwing to its dual role as a hormone and neurotransmitter, norepinephrine (NE) detection is of great significance to biomedical diagnosis. In the present work, we have explored intense green fluorescence of poly (norepinephrine) (PNE) nanoparticles synthesized by oxidizing NE in alkaline condition, in combination with red fluorescent bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) for naked-eye detection of NE. The effect of sodium hydroxide on the emission behavior of NE was studied.
View Article and Find Full Text PDFThe ability to recognize the molecular chirality of enantiomers is extremely important owing to their critical role in drug development and biochemistry. Convenient discrimination of enantiomers has remained a challenge due to lack of unsophisticated methods. In this work, we have reported a simple strategy for chiral recognition of thiol-containing amino acids including penicillamine (PA), and cysteine (Cys).
View Article and Find Full Text PDFThe surface of nanoparticles (NPs) get coated by a wide range of biomolecules, upon exposure to biological fluids. It is now being increasingly accepted that NPs with particular physiochemical properties have a capacity to induce conformational changes to proteins and therefore influence their biological fates, we hypothesized that the gold NP's metal surface may also be involved in the observed Fg unfolding and inflammatory response. To mechanistically test this hypothesis, we probed the interaction of Fg with gold surfaces using molecular dynamic simulation (MD) and revealed that the gold surface has a capacity to induce Fg conformational changes in favor of inflammation response.
View Article and Find Full Text PDFMonitoring the ratio of 40- and 42-residue amyloid β peptides (i.e., Aβ40 and Aβ42) in human plasma is considered one of the hallmarks of detection of the early stage of Alzheimer's disease (AD).
View Article and Find Full Text PDFNanoscale
November 2017
As in many other methods that have integrated nanoparticles (NPs), the chemical nose/tongue strategy has also progressed greatly since the entrance of NPs into this field. The fascinating tunable physicochemical properties of NPs have made them powerful candidates for array-based sensing platforms and have enabled the development of real-time, sensitive and portable systems that are able to target complex mixtures of analytes. In particular, the unique optical properties of NPs have a key role in providing promising array-based sensing approaches.
View Article and Find Full Text PDF