98%
921
2 minutes
20
Critical thermal limits often determine species distributions for diverse ectotherms and have become a useful tool for understanding past and predicting future range shifts in response to changing climates. Despite recently documented population declines and range shifts of bumblebees (genus ), the few measurements of thermal tolerance available for the group have relied on disparate measurement approaches. We describe a novel stereotypical behavior expressed by bumblebee individuals during entry into chill coma. This behavioral indicator of minimum critical temperature (CT) occurred at ambient temperatures of 3-5°C (approximately 7-9°C core temperatures) and was accompanied by a pronounced CO pulse, indicative of loss of spiracle function. Maximum critical temperature (CT) was indicated by the onset of muscular spasms prior to entering an unresponsive state and occurred at ambient temperatures of approximately 52-55°C (42-44°C core temperatures). Measurements of CT and CT were largely unaffected by acclimation, age or feeding status, but faster ramping rates significantly increased CT and decreased CT This high-throughput approach allows rapid measurement of critical thermal limits for large numbers of individuals, facilitating large-scale comparisons among bumblebee populations and species - a key step in determining current and future effects of climate on these critical pollinators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.165589 | DOI Listing |
Microbiol Spectr
September 2025
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
Modulating cell endocytosis activity to reduce host susceptibility to virus represents a promising strategy for antiviral drug development. In this study, we reveal that lactate transporter SLC16A3 is a critical host factor for reducing diverse virus invasion. By performing metabolomics, proteomics, and thermal proteome profiling experiments, AP1G1, a pivotal protein involved in cellular endocytosis, was indiscriminately screened as a chaperone of SLC16A3.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece.
An innovative 4D targeted method was developed for the determination of 61 bioactive compounds in royal jelly (RJ) related to their health-promoting properties. The method, apart from high-resolution mass spectrometry, exploits the advantages of vacuum-insulated probe-heated electrospray ionization source (VIP-HESI), reducing thermal degradation, and trapped ion mobility spectrometry (TIMS), improving selectivity and compound identification. The optimization of VIP-HESI ionization parameters using experimental designs showed that the critical parameters were the capillary voltage as well as the probe gas flow rate and temperature.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103 USA.
Unlabelled: Habitat fragmentation is a major cause of biodiversity loss. Fragmentation can alter thermal conditions on the remaining patches, especially at habitat edges, but few studies have examined variations in thermal tolerance of species in fragmented habitats. Ants are sensitive to both habitat fragmentation and temperature changes, and are an ideal taxon for studying these impacts.
View Article and Find Full Text PDFACS Omega
September 2025
Materials and Manufacturing Directorate, AFRL/RXEE, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States.
This study addresses a critical limitation in direct bonded copper (DBC) materials used in power electronics by introducing a copper-zirconium (Cu/Zr) alloy interposing layer at the copper-ceramic interface. This novel design aims to mitigate mechanical stress induced by mismatched material properties, such as the coefficient of thermal expansion (CTE) and elastic modulus, during thermal cycling. The key findings of this study are (1) thermal fatigue improvement: Test samples with the Cu/Zr interface layer (Cu-Cu/Zr-AlN) three times enhanced thermal fatigue resistance, surviving 30 thermal cycles from -55 to 300 °C before delamination, while standard DBC substrates without the Cu/Zr layer failed after just 10 cycles, indicating a performance improvement with the Cu/Zr alloy, (2) durability projections: Based on the Coffin-Manson model, if the upper temperature is capped at 150 °C, the Cu-Cu/Zr-AlN substrates are projected to survive approximately 1372 cycles, underscoring their potential for long-term reliability, and (3) stress mitigation: The Cu/Zr alloy layer bridges the CTE disparity between copper and ceramic, reducing mechanical stress and improving structural integrity across a broad temperature range (-55 to 300 °C).
View Article and Find Full Text PDFRSC Adv
September 2025
State Key Laboratory of Disaster Prevention & Reduction for Power Grid Changsha China
Positive temperature coefficient (PTC) materials are pivotal for safeguarding lithium iron phosphate batteries, yet their industrial application is hindered by critical drawbacks: excessive film thickness, high internal resistance, and poor solvent sustainability. Addressing these challenges, this study innovatively develops a solvent-free thermal rolling process to fabricate an asymmetric expansion polymer film, specifically thermoplastic polyurethane (TPU) reinforced polyethylene (PE)/carbon composites, which significantly enhances the PTC effect. The core mechanism lies in the asymmetric thermal expansion of TPU and PE: this unique behavior disrupts the conductive carbon network, triggering a sharp PTC transition at around 120 °C.
View Article and Find Full Text PDF