98%
921
2 minutes
20
Retinopathy of prematurity (ROP) is a retinopathy characterized by retinal neovascularization (RNV) occurring in preterm infants treated with high concentrations of oxygen and may lead to blindness in severe cases. Currently, anti-VEGF therapy is a major treatment for ROP, but it is costly and may cause serious complications. The previous study has demonstrated that melatonin exerted neuroprotective effect against retinal ganglion cell death induced by hypoxia in neonatal rats. However, whether melatonin is anti-angiogenic and neuroglial protective in the progression of ROP remains unknown. Thus, this study was to investigate the effect of melatonin on RNV and neuroglia in the retina of oxygen-induced retinopathy (OIR) mice. The results showed a reduction in retinal vascular leakage in OIR mice after melatonin treatment. Besides, the size of retinal neovascular and avascular areas, the number of preretinal neovascular cell nuclei, and the number of proliferative vascular endothelial cells within the neovascular area were significantly decreased in mice treated with melatonin. After oxygen-induced injury, the density of astrocytes was decreased, accompanied by morphologic and functional changes of astrocytes. Besides, retinal microglia were also activated. Meanwhile, the levels of inflammatory factors were elevated. However, these pathologic processes were all hindered by melatonin treatment. Furthermore, HIF-1α-VEGF pathway was activated in the retina of OIR mice, yet was suppressed in melatonin-treated OIR mice retinas. In conclusion, melatonin prevented pathologic neovascularization, protected neuroglial cells, and exerts anti-inflammation effect via inhibition of HIF-1α-VEGF pathway in OIR retinas, suggesting that melatonin could be a promising therapeutic agent for ROP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpi.12473 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De
Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.
View Article and Find Full Text PDFBr J Ophthalmol
September 2025
Capital Medical University, Beijing, China
Background: Retinopathy of prematurity (ROP), an oxygen-induced retinopathy (OIR), triggers a series of vascular lesions and inflammatory responses and results in visual impairment or even blindness. Triptolide (TP) possesses many pharmacological properties, including immunosuppressive and anti-tumour effects. However, the effects of TP on ROP and its underlying mechanisms remain unclear.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Proliferative diabetic retinopathy (PDR) is a complication of diabetic microangiopathy that can cause severe visual impairment. Due to retinal neovascularization and fibrovascular membrane (FVM) formation, inhibition of vascularization and fibrosis plays a key role in PDR. In our study, single-cell sequencing of FVMs from PDR patients identified a MARCO microglial subpopulation exhibiting both pro-angiogenic and pro-fibrotic effects.
View Article and Find Full Text PDFExp Eye Res
August 2025
Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. Electronic address:
Retinal and choroidal neovascularization (RNV and CNV) are critical pathological features of vision-threatening ocular disorders. This study investigated the role of retinoic acid receptor-related orphan receptor γt (RORγt) in the regulation of RNV and CNV formation using oxygen-induced retinopathy (OIR) and CNV mouse models, and explored its underlying mechanisms. We demonstrated that RORγt expression was significantly elevated in retinal tissues of both models, co-localizing with IL-23 receptor (IL-23R) and T-cell receptor γδ (TCRγδ), indicating its primary expression in Th17 and γδT cells.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
August 2025
Eye Institute and Affiliated Xiamen Eye Center, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China.
Purpose: Retinal neovascular diseases, often associated with elevated vascular endothelial growth factor (VEGF) levels, are major causes of blindness. Current therapies lack sustained efficacy and safety. This study aimed to evaluate the effectiveness of an adeno-associated virus 2 (AAV2)-based gene therapy vector carrying soluble fms-like tyrosine kinase-1 (sFLT-1) and short hairpin RNA targeting VEGF (shVEGF) in treating retinal neovascularization.
View Article and Find Full Text PDF