98%
921
2 minutes
20
The bacterial strain Sphingobium sp. YW16, which is capable of degrading monocrotophos, was isolated from paddy soil in China. Strain YW16 could hydrolyze monocrotophos to dimethylphosphate and N-methylacetoacetamide and utilize dimethylphosphate as the sole carbon source but could not utilize N-methylacetoacetamide. Strain YW16 also had the ability to hydrolyze other organophosphate pesticides. A fragment (7067 bp) that included the organophosphorus hydrolase gene, opdA, was acquired from strain YW16 using the shotgun technique combined with SEFA-PCR. Its sequence illustrated that opdA was included in TnopdA, which consisted of a transpose gene, a putative integrase gene, a putative ATP-binding protein gene, and opdA. Additionally, a conjugal transfer protein gene, traI, was located downstream of TnopdA. The juxtaposition of TnopdA with TraI suggests that opdA may be transferred from strain YW16 to other bacteria through conjugation. OpdA was able to hydrolyze a wide range of organophosphate pesticides, with the hydrolysis efficiency decreasing as follows: methyl parathion > fenitrothion > phoxim > dichlorvos > ethyl parathion > trichlorfon > triazophos > chlorpyrifos > monocrotophos > diazinon. This work provides the first report of opdA in the genus Sphingobium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-0718-3 | DOI Listing |
Enzyme Microb Technol
February 2024
Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:
Selenium nanoparticles (SeNPs) have gained significant attention in the fields of medicine and healthcare products due to their various biological activities and low toxicity. In this study, we focused on genetically modifying the Saccharomyces cerevisiae strain YW16 (CICC 1406), which has the ability to efficiently reduce sodium selenite and produce red SeNPs. By overexpressing genes involved in glutathione production, we successfully increased the glutathione titer of the modified strain YJ003 from 41.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2018
Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
The bacterial strain Sphingobium sp. YW16, which is capable of degrading monocrotophos, was isolated from paddy soil in China. Strain YW16 could hydrolyze monocrotophos to dimethylphosphate and N-methylacetoacetamide and utilize dimethylphosphate as the sole carbon source but could not utilize N-methylacetoacetamide.
View Article and Find Full Text PDF