98%
921
2 minutes
20
The Dongxiang Blue-shelled chicken is one of the most valuable Chinese indigenous poultry breeds. However, compared to the Italian native White Leghorn, although this Chinese breed possesses numerous favorable characteristics, it also exhibits lower growth performance and fertility. Here, we utilized genotyping sequencing data obtained via genome reduction on a sequencing platform to detect 100,114 single nucleotide polymorphisms and perform further biological analysis and functional annotation. We employed cross-population extended haplotype homozygosity, eigenvector decomposition combined with genome-wide association studies (EigenGWAS), and efficient mixed-model association expedited methods to detect areas of the genome that are potential selected regions (PSR) in both chicken breeds, and performed gene ontology (GO) enrichment and quantitative trait loci (QTL) analyses annotating using the Kyoto Encyclopedia of Genes and Genomes. The results of this study revealed a total of 2424 outlier loci (-value <0.01), of which 2144 occur in the White Leghorn breed and 280 occur in the Dongxiang Blue-shelled chicken. These correspond to 327 and 94 PSRs containing 297 and 54 genes, respectively. The most significantly selected genes in Blue-shelled chicken are and , while the gene, related to eggshell color, was identified via EigenGWAS. We show that the White Leghorn genes , , , , , , , and are involved in immunity, reproduction, and growth, and thus might represent footprints of the selection process. In contrast, we identified six significantly enriched pathways in the Dongxiang Blue-shelled chicken that are related to amino acid and lipid metabolism as well as signal transduction. Our results also reveal the presence of a GO term associated with cell metabolism that occurs mainly in the White Leghorn breed, while the most significant QTL regions mapped to the Chicken QTL Database (GG_4.0) for the Dongxiang Blue-shelled breed are predominantly related to lesions, bone mineral content, and other related traits compared to tibia length and body weight (, at 14, 28, 42, and 70 d) in the White Leghorn. The results of this study highlight differences in growth, immunity, and egg quality traits between the two breeds, and provide a foundation for the exploration of their genetic mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919749 | PMC |
http://dx.doi.org/10.1534/g3.117.300382 | DOI Listing |
Poult Sci
August 2025
Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China. Electronic address:
The White Leghorn chicken is a renowned high-yielding egg-laying breed, frequently utilized in hybrid breeding programs for the modification of egg production traits. However, the plumage color genes carried by White Leghorns, particularly the sex-linked barring feather gene, have rarely been exploited in breeding practices. Progeny resulting from crosses with White Leghorns predominantly exhibit white plumage due to the dominant white feather gene, which epistatically masks other feather colors.
View Article and Find Full Text PDFGenes (Basel)
December 2023
Jiangsu Institute of Poultry Science, Yangzhou 225125, China.
Fat has a high energy density, and excessive fatness has been recognized as a problem for egg production and the welfare of chickens. The identification of a genetic polymorphism controlling fat deposition would be helpful to select against excessive fatness in the laying hen. This study aimed to estimate genomic heritability and identify the genetic architecture of abdominal fat deposition in a population of chickens from a Dongxiang blue-shelled local breed crossbred with the White Leghorn.
View Article and Find Full Text PDFPoult Sci
December 2021
Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China. Electronic address:
Eggshell translucency is a ubiquitous external eggshell quality problem caused by variations of eggshell ultrastructure or shell membrane. In previous studies, researchers have widely investigated this phenomenon with nutritional, environmental, and genetic perspectives in many breeds. However, most studies referring to phenotypic measurement of shell translucency have been performed using a relatively subjective two-, three-, or four-grading methods, which made it impossible to compare distribution of shell translucency among different breeds.
View Article and Find Full Text PDFAnimal
January 2021
Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, 225125 Yangzhou, Jiangsu, China. Electronic address:
Mottled eggs in layer chickens are gaining increasing attention because of the economic impact on the egg industry caused by the reduced sale value of commodity eggs. However, the genetic architecture underlying mottled eggs is not well understood. The genetic architecture underlying the mottled egg trait was investigated using genome-wide association studies (GWAS) by high-density arrays, using a total of 407 pink eggs and 799 blue eggs from an F resource population generated by crossing Dongxiang Blue-shelled and White Leghorn chickens.
View Article and Find Full Text PDF3 Biotech
November 2019
Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China.
The density of contour feathers is an important trait as it is closely related to heat dissipation in birds. Thus, identification of the major genes that control this trait will be useful to improve heat tolerance in chicken. So far, no GWAS study for the density of contour feathers in birds has been previously published; therefore, this study was aimed to identify genomic regions controlling the density of contour feathers.
View Article and Find Full Text PDF