Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The UV/chlorine process is an emerging advanced oxidation process (AOP) that produces various reactive species, such as hydroxyl radicals (HO) and reactive chlorine species (RCS). The effects of the treatment conditions, such as chlorine dosage and pH, and the water matrix components of natural organic matter (NOM), alkalinity, ammonia and halides, on the kinetics and reactive species in the degradation of four micropollutants, metronidazole (MDZ), nalidixic acid (NDA), diethyltoluamide (DEET) and caffeine (CAF), by the UV/chlorine process were investigated. The degradation of MDZ and CAF was primarily attributable to HO and ClO, respectively, while that of NDA was primarily attributable to both ClO and CO. HO, Cl and CO are important for the degradation of DEET. The second-order rate constants for ClO with CAF and CO with NDA were determined to be 5.1 (±0.2) × 10 Ms and 1.4 (±0.1) × 10 Ms, respectively. Increasing chlorine dosage slightly changed the contribution of HO but linearly increased that of ClO to micropollutant degradation. Increasing pH decreased the contribution of either HO or Cl but not that of ClO. Both NOM and bicarbonate decreased the contributions of HO and Cl, whereas NOM but not bicarbonate significantly decreased that of ClO. The contribution of either HO or Cl first rose and then fell as the molar ratio of ammonia to chlorine increased from 0 to 1:1, while that of ClO decreased. The co-presence of high concentrations of Cl and Br enhanced the contribution of ClBr and BrCl.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2017.09.028DOI Listing

Publication Analysis

Top Keywords

reactive species
12
uv/chlorine process
12
species degradation
8
degradation micropollutants
8
chlorine dosage
8
attributable clo
8
increased clo
8
nom bicarbonate
8
bicarbonate decreased
8
clo
7

Similar Publications

Objectives: Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases.

View Article and Find Full Text PDF

Oncogenic role of the SLC7A13-SLC3A1 cystine transporter in human luminal breast cancer and its cryo-EM structure.

Protein Cell

September 2025

Department of Human Cell Biology and Genetics, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Breast cancer is a prevalent malignancy worldwide. The majority of breast cancers belong to the estrogen receptor (ER)-positive luminal subtype that can be effectively treated with antiestrogen therapies. However, a significant portion of such malignancies become hormone-refractory and incurable.

View Article and Find Full Text PDF

Cdk1-dependent lamin aggregation underlies oxidative stress-induced nuclear shape abnormalities.

BMB Rep

September 2025

Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499; Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499; BK21 R&E Initiative for Advanced Precision Medicine, Ajou University School of Medicine, Suwon 16499, Korea.

Altered nuclear morphology, one of the characteristics of cancer cells, is often indicative of tumor prognosis. While reactive oxygen species (ROS) are known to induce nuclear morphology changes, mechanisms underlying these effects remain elusive, particularly regarding nuclear assembly. We hypothesized that mitotic cells might exhibit increased susceptibility to ROSinduced nuclear deformation due to the dynamic nature of nuclear envelope during mitosis, i.

View Article and Find Full Text PDF

Mechanistic studies have been suggested that toxic effects of bleomycin are generally attributed to formation of free radicals, mitochondria damages, oxidative stress and inflammation. For this purpose, we explored the direct exposure of bleomycin and protective effects of the betanin and vanillic acid separately against its possible toxicity in rat lung isolated mitochondria. Various mitochondrial toxicity parameters were evaluated including; succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, malondialdehyde (MDA) and glutathione disulfide (GSSG) levels.

View Article and Find Full Text PDF

Electronic Structure Reconfiguration of Zn-NB Sites for Enhanced Fenton-Like Catalysis.

Angew Chem Int Ed Engl

September 2025

College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P.R. China.

Despite growing interest in single-atom catalysts (SACs) for Fenton-like reactions, zinc (Zn)-based SACs remain unexplored due to the inherent inertness of Zn, whose fully occupied 3d electronic configuration limits redox activity. Here, we overcome this limitation by introducing boron (B) atoms to reconfigure the electronic structure of Zn-N coordination sites, yielding an activated catalyst denoted as Zn-NBC. This electronic modulation transforms inert Zn-N sites into catalytically active centers (Zn-NB ), enabling significantly enhanced Fenton-like activity.

View Article and Find Full Text PDF