Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase.

ACS Catal

BBSRC/EPSRC Manchester Synthetic Biology Research Centre for Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.

Published: September 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS), and we show that these are active biocatalysts for monoterpene production using biocatalysis and metabolic engineering platforms. In metabolically engineered monoterpene-producing strains, use of bLinS leads to 300-fold higher linalool production compared with the corresponding plant monoterpene synthase. With bCinS, 1,8-cineole is produced with 96% purity compared to 67% from plant species. Structures of bLinS and bCinS, and their complexes with fluorinated substrate analogues, show that these bacterial monoterpene synthases are similar to previously characterized sesquiterpene synthases. Molecular dynamics simulations suggest that these monoterpene synthases do not undergo large-scale conformational changes during the reaction cycle, making them attractive targets for structured-based protein engineering to expand the catalytic scope of these enzymes toward alternative monoterpene scaffolds. Comparison of the bLinS and bCinS structures indicates how their active sites steer reactive carbocation intermediates to the desired acyclic linalool (bLinS) or bicyclic 1,8-cineole (bCinS) products. The work reported here provides the analysis of structures for this important class of monoterpene synthase. This should now guide exploitation of the bacterial enzymes as gateway biocatalysts for the production of other monoterpenes and monoterpenoids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617326PMC
http://dx.doi.org/10.1021/acscatal.7b01924DOI Listing

Publication Analysis

Top Keywords

monoterpene synthases
16
monoterpene
8
bacterial monoterpene
8
synthases linalool
8
linalool synthase
8
18-cineole synthase
8
metabolic engineering
8
synthase bcins
8
monoterpene synthase
8
blins bcins
8

Similar Publications

Knowledge of the intraspecific variability of volatiles produced by plants is central for estimating their fluxes from ecosystems and for understanding their evolution in an ecological and phylogenetic context. Past studies suggested that volatile emissions from Cork oak ( L.) exhibit a high degree of qualitative and quantitative polymorphism.

View Article and Find Full Text PDF

OfWRKY33 binds to the promoter of key linalool synthase gene to stimulate linalool synthesis in flowers.

Hortic Res

September 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China.

Volatile aroma compounds make significant contributions to human perception of flowers. is a famous aroma plant, and linalool is proved to be the dominant aroma active compound. Although some terpene synthases have been characterized, a comprehensive study of the hub metabolic gene and its transcriptional regulation remain to be revealed.

View Article and Find Full Text PDF

Geraniol is a monoterpene alcohol with a rose-like aroma, used in food and cosmetics and for its anti-inflammatory, antibacterial, and insect-repellent properties. Geraniol is commonly chemically synthesized from petroleum-based sources in a highly energy-demanding process with a large carbon footprint. Alternatively, geraniol can be derived from plant-based essential oils but with relatively low yields and limitations from seasonal cultivation.

View Article and Find Full Text PDF

We reported the functional characterization of cDNAs encoding geranyl diphosphate synthase small subunit I (GPPS.SUU I) that determine the presence or absence of monoterpene emission from lily flowers. While monoterpene compounds are among the most important scent substances in lily flowers, their emission levels vary among lily cultivars.

View Article and Find Full Text PDF

Sabinene is a type of monoterpene that is widely used in flavors, fragrances and pharmaceuticals. Though sabinene biosynthesis has been investigated in a variety of microorganisms, application of sabinene is still limited due to its high production cost and lesser yielding strains. The baker's yeast Saccharomyces cerevisiae, which is generally recognized as safe (GRAS), is a suitable cell factory for the food and beverage industries.

View Article and Find Full Text PDF