Publications by authors named "Aisling Ni Cheallaigh"

Fluorinated glycans offer a prime opportunity to study the intricacies of their associated binding events with proteins, invoke resistance toward enzymatic hydrolysis, and modulate carbohydrate physicochemical properties. Sugar nucleotides are the key building blocks used by glycosyltransferases and associated enzymes to assemble glycans and, as such, represent a considerable landscape of opportunity to develop fluorinated motifs and enable structure-to-function understanding. Herein, we target the isosteric inclusion of fluorine within the nucleoside diphosphate sugar framework of GDP-mannose using a chemoenzymatic approach.

View Article and Find Full Text PDF

Nucleoside analogue therapeutics have a proven capability within drug discovery as antiviral and antineoplastic agents. However, their efficacy can be limited by poor cellular uptake, off target toxicity and low bioavailability. Glycosylation of pharmaceutical agents/natural products represents a strategically simple method to modulate pharmacological profiles.

View Article and Find Full Text PDF

Nucleoside analogs have proven highly successful in many pharmaceutical intervention strategies, and continued exploration of next generation structural motifs is required. Herein we discuss recent advances toward the chemical synthesis of heteroatom-modified nucleosides, where this is constituted by the chalcogens sulfur or selenium. Paying specific focus to the organic chemistry to incorporate these heteroatoms, we consider developments toward ribose ring oxygen and ring carbon replacements alongside chalcogen-modified heterobases.

View Article and Find Full Text PDF
Article Synopsis
  • - Mammalian cells communicate through surface interactions, and proteoglycans play a key role by carrying large sugar chains that help recruit signaling molecules, yet only a few proteoglycans are currently identified.
  • - Two enzymes, XT1 and XT2, are responsible for the initial step of adding sugars to proteins but their redundancy complicates the study of proteoglycans.
  • - The research introduces a method called bump-and-hole engineering to modify these enzymes, allowing for the specific addition of a chemically marked sugar to proteins, enabling visualization and detailed analysis of proteoglycan structures in cells.
View Article and Find Full Text PDF

Published work has shown that glycoconjugate vaccines, based on truncated detoxified lipopolysaccharides from Moraxella catarrhalis attached through their reducing end to a carrier protein, gave good protection for all three serotypes A, B, and C in mice immunisation experiments. The (from the non-reducing end) truncated LPS structures were obtained from bacterial glycosyl transferase knock-out mutants and contained the de-esterified Lipid A, two Kdo residues and five glucose moieties. This work describes the chemical synthesis of the same outer Moraxella LPS structures, spacer-equipped and further truncated from the reducing end, i.

View Article and Find Full Text PDF

Upon undergoing mucoid conversion within the lungs of cystic fibrosis patients, the pathogenic bacterium synthesises copious quantities of the virulence factor and exopolysaccharide alginate. The enzyme guanosine diphosphate mannose dehydrogenase (GMD) catalyses the rate-limiting step and irreversible formation of the alginate sugar nucleotide building block, guanosine diphosphate mannuronic acid. Since there is no corresponding enzyme in humans, strategies that could prevent its mechanism of action could open a pathway for new and selective inhibitors to disrupt bacterial alginate production.

View Article and Find Full Text PDF

As the world moves towards net-zero carbon emissions, the development of sustainable chemical manufacturing processes is essential. Within manufacturing, purification by distillation is often used, however this process is energy intensive and methods that could obviate or reduce its use are desirable. Developed herein is an alternative, oxidative biocatalytic approach that enables purification of alkyl monoglucosides (essential bio-based surfactant components).

View Article and Find Full Text PDF

Amphiphilic glycoconjugates offer an important prospect for development as chemical biology tools and biosurfactants. The chemical synthesis of such materials is required to expedite such prospect, compounded by the example of oleyl glycosides. Herein, we report a mild and reliable glycosylation method to access oleyl glucosides, glycosidating oleyl alcohol with α-trichloroacetimidate donors.

View Article and Find Full Text PDF

Infecting the stomach of almost 50 % of people, Helicobacter pylori is a causative agent of gastritis, peptic ulcers and stomach cancers. Interactions between bacterial membrane-bound lectin, Blood group Antigen Binding Adhesin (BabA), and human blood group antigens are key in the initiation of infection. Herein, the synthesis of a B-antigen hexasaccharide (B6) and a B-Lewis b heptasaccharide (BLeb7) and Bovine Serum Albumin glycoconjugates thereof is reported to assess the binding properties and preferences of BabA from different strains.

View Article and Find Full Text PDF

Investigation into binding to Lewis b (Le) antigens through the blood group antigen binding adhesion protein (BabA) requires structurally well-defined tools. A Le hexasaccharide thioglycoside donor was chemically prepared through a linear approach starting from D-lactose. This donor can be used to attach reducing end linkers providing a range of options for conjugation techniques or to further extend the oligosaccharide structure.

View Article and Find Full Text PDF

While 13C-labelled proteins are common tools in NMR studies, lack of access to 13C-labelled carbohydrate structures has restricted their use. l-Fucose is involved in a wide range of physiological and pathophysiological processes in mammalian organisms. Here, l-[U-13C6]-Fuc labelled type I Lewis b (Leb) structures have been synthesised for use in NMR binding studies with the Blood-group Antigen Binding Adhesin (BabA), a membrane-bound protein from the bacterium Helicobacter pylori.

View Article and Find Full Text PDF

The UbiX-UbiD enzymes are widespread in microbes, acting in concert to decarboxylate alpha-beta unsaturated carboxylic acids using a highly modified flavin cofactor, prenylated FMN (prFMN). UbiX serves as the flavin prenyltransferase, extending the isoalloxazine ring system with a fourth non-aromatic ring, derived from sequential linkage between a dimethylallyl moiety and the FMN N5 and C6. Using structure determination and solution studies of both dimethylallyl monophosphate (DMAP) and dimethyallyl pyrophosphate (DMAPP) dependent UbiX enzymes, we reveal the first step, N5-C1' bond formation, is contingent on the presence of a dimethylallyl substrate moiety.

View Article and Find Full Text PDF

A chemoenzymatic approach providing access to all four intermediates in the peppermint biosynthetic pathway between limonene and menthone/isomenthone, including noncommercially available intermediates (-)- trans-isopiperitenol (2), (-)-isopiperitenone (3), and (+)- cis-isopulegone (4), is described. Oxidation of (+)-isopulegol (13) followed by enolate selenation and oxidative elimination steps provides (-)-isopiperitenone (3). A chemical reduction and separation route from (3) provides both native (-)- trans-isopiperitenol (2) and isomer (-)- cis-isopiperitenol (18), while enzymatic conjugate reduction of (-)-isopiperitenone (3) with IPR [(-)-isopiperitenone reductase)] provides (+)- cis-isopulegone (4).

View Article and Find Full Text PDF

Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS), and we show that these are active biocatalysts for monoterpene production using biocatalysis and metabolic engineering platforms.

View Article and Find Full Text PDF

Protochlorophyllide (Pchlide), an intermediate in the biosynthesis of chlorophyll, is the substrate for the light-driven enzyme protochlorophyllide oxidoreductase. Pchlide has excited-state properties that allow it to initiate photochemistry in the enzyme active site, which involves reduction of Pchlide by sequential hydride and proton transfer. The basis of this photochemical behavior has been investigated here using a combination of time-resolved spectroscopies and density functional theory calculations of a number of Pchlide analogues with modifications to various substituent groups.

View Article and Find Full Text PDF

The activity of the reversible decarboxylase enzyme Fdc1 is dependent on prenylated FMN (prFMN), a recently discovered cofactor. The oxidized prFMN supports a 1,3-dipolar cycloaddition mechanism that underpins reversible decarboxylation. Fdc1 is a distinct member of the UbiD family of enzymes, with the canonical UbiD catalyzing the (de)carboxylation of -hydroxybenzoic acid-type substrates.

View Article and Find Full Text PDF

Three enzymes of the essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (-)-menthone:(-)-menthol reductase and (-)-menthone:(+)-neomenthol reductase, and the "ene" reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue-swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction.

View Article and Find Full Text PDF

Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (-)-menthone:(-)-menthol reductase and (-)-menthone:(+)-neomenthol reductase, and the "ene" reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue-swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction.

View Article and Find Full Text PDF

Menthol isomers are high-value monoterpenoid commodity chemicals, produced naturally by mint plants, Mentha spp. Alternative clean biosynthetic routes to these compounds are commercially attractive. Optimization strategies for biocatalytic terpenoid production are mainly focused on metabolic engineering of the biosynthesis pathway within an expression host.

View Article and Find Full Text PDF