Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In situ high pressure and high temperature (HPHT) study has been carried out on C/ferrocene (Fc) in order to detect the process of polymerization and reveal the polymerization mechanism. Pristine C was also studied under same conditions for comparison. In both cases, similar types of polymers can be observed after pressure and temperature release, but with different fractions, i.e. a larger amount of 2D polymers were formed in pure C, while more branch-like polymers were synthesized in C/Fc, although the most fraction of the polymers is still 1D chain-like polymer in both of the materials. The polymers formed in C can be detected both during the "up" run (pressure and temperature increase) and the "down" run (pressure and temperature decrease), while in C/Fc, the polymers can only be synthesized in the "down" run. The differences between the two cases were attributed to the different initial lattice structures of the two materials and the confinement effect of the dopant. The polymerization mechanism on C/Fc under HPHT was also revealed in this work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589851PMC
http://dx.doi.org/10.1038/s41598-017-11425-4DOI Listing

Publication Analysis

Top Keywords

polymerization mechanism
12
pressure temperature
12
high pressure
8
pressure high
8
high temperature
8
polymers formed
8
polymers synthesized
8
polymers
6
pressure
5
temperature
5

Similar Publications

Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.

View Article and Find Full Text PDF

Peripheral Inflammation Is Associated With Greater Neuronal Injury and Lower Episodic Memory Among Late Middle-Aged Adults.

J Neurochem

September 2025

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Elucidating the earliest biological mechanisms underlying Alzheimer's disease (AD) is critical for advancing early detection strategies. While amyloid-β (Aβ) and tau pathologies have been central to preclinical AD research, the roles of peripheral biological processes in disease initiation remain underexplored. We investigated patterns of F-MK6240 tau positron emission tomography (PET) and peripheral inflammation across stages defined by Aβ burden and neuronal injury in n = 132 (64.

View Article and Find Full Text PDF

Efficient and low-cost removal of dissolved organic phosphorus by visible light-enhanced Ti electrocoagulation with self-generated rutile photocatalysts.

Water Res

August 2025

State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.

View Article and Find Full Text PDF

In this study, Fe-Ni-layered double hydroxide modified crayfish shell biochar substrate (Fe-Ni-LDH@CSBC) was successfully prepared and introduced into constructed wetland (CW) to research the Cr(VI) removal mechanism through substrate adsorption and microbial action. Adsorption experiments demonstrated the equilibrium adsorption capacities of Fe-Ni-LDH@CSBC for Cr(VI) could reach 1058.48 (C=10 mg/L) and 1394.

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 nanoparticles: A promising nano-antimicrobial agent for sustainable management of bacterial leaf streak in rice.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.

View Article and Find Full Text PDF