Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model.

Biomaterials

Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China; International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan. Electronic address:

Published: November 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the present study, pure zinc stents were implanted into the abdominal aorta of rabbits for 12 months. Multiscale analysis including micro-CT, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and histological stainings was performed to reveal the fundamental degradation mechanism of the pure zinc stent and its biocompatibility. The pure zinc stent was able to maintain mechanical integrity for 6 months and degraded 41.75 ± 29.72% of stent volume after 12 months implantation. No severe inflammation, platelet aggregation, thrombosis formation or obvious intimal hyperplasia was observed at all time points after implantation. The degradation of the zinc stent played a beneficial role in the artery remodeling and healing process. The evolution of the degradation mechanism of pure zinc stents with time was revealed as follows: Before endothelialization, dynamic blood flow dominated the degradation of pure zinc stent, creating a uniform corrosion mode; After endothelialization, the degradation of pure zinc stent depended on the diffusion of water molecules, hydrophilic solutes and ions which led to localized corrosion. Zinc phosphate generated in blood flow transformed into zinc oxide and small amounts of calcium phosphate during the conversion of degradation microenvironment. The favorable physiological degradation behavior makes zinc a promising candidate for future stent applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2017.08.022DOI Listing

Publication Analysis

Top Keywords

pure zinc
28
zinc stent
24
degradation mechanism
12
mechanism pure
12
zinc
11
evolution degradation
8
stent
8
abdominal aorta
8
zinc stents
8
electron microscopy
8

Similar Publications

Transient Induction of Chirality from an Activated Carboxylic Acid to a Zinc Complex.

Angew Chem Int Ed Engl

September 2025

Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, Rome, I-00185, Italy.

Enantiomerically pure activated carboxylic acids (ACAs), (R)- and (S)-2-cyano-2-phenylpropanoic acids, are exploited to program the induction of chirality onto a zinc metal complex over time. NMR analysis shows that binding of the enantiopure ACA conjugate base to the Zn center breaks the symmetry of the complex and induces the formation of a single diastereoisomeric metal complex. Such a diastereoisomer is present only as long as the ACA is found in solution, and the ACA loading determines the time interval in which it persists in solution.

View Article and Find Full Text PDF

This work introduces the novel anionic cluster BSiZn as the smallest molecular "compass", featuring a unique two-layered architecture with a planar pentacoordinate boron (ppB) center. The cluster comprises a quasi-planar BSi stator─a silicon-based analogue of borozene with σ/π double aromaticity (6π + 10σ delocalized electrons)─and a Zn rotor dimer. High-level calculations (CCSD(T)//PBE0-D3) reveal an ultralow rotational barrier of 0.

View Article and Find Full Text PDF

The use of highly flammable materials such as foams, resins, and plastics has led to an increase in the frequency and severity of urban fires worldwide. To address this issue, this study developed a high-specific-surface-area mesoporous metal-organic framework (Fe-MOFs) with heat trapping and smoke adsorption. The Fe-MOFs, zinc tailings (ZTs), piperazine pyrophosphate (PAPP), and sodium lignosulfonate (LS) were used to modify rigid polyurethane foam (RPUF).

View Article and Find Full Text PDF

The intricate degradation dynamics exhibited by biodegradable alloys significantly influence host responses during the implantation process, posing challenges in achieving stable osseointegration. It is thus critical to tailor the biodegradation profiles of these implants to establish a conductive tissue microenvironment for bone tissue regeneration. In this study, we demonstrate that Zn-Li alloy forms a layer of Li-containing degradation products at the bone-implant interface to accommodate the bone regeneration process.

View Article and Find Full Text PDF

Biodegradable zinc (Zn) alloys are promising biodegradable metals owing to their appropriate in vivo degradation rate. To address the problem of low mechanical properties of pure Zn, magnesium (Mg) is added into Zn to develop Zn-0.5Mg alloys which are rolled subsequently.

View Article and Find Full Text PDF