98%
921
2 minutes
20
Flexible and stretchable conductive textiles are highly desired for potential applications in wearable electronics. This study demonstrates a scalable and facile preparation of all-organic nonwoven that is mechanically stretchable and electrically conductive. Polyurethane (PU) fibrous nonwoven is prepared via the electrospinning technique; in the following step, the electrospun PU nonwoven is dip-coated with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This simple method enables convenient preparation of PEDOT:PSS@PU nonwovens with initial sheet resistance in the range of 35-240 Ω/sq (i.e., the electrical conductivity in the range of 30-200 S m) by varying the number of dip-coating times. The resistance change of the PEDOT:PSS@PU nonwoven under stretch is investigated. The PEDOT:PSS@PU nonwoven is first stretched and then released repeatedly under certain strain (denoted as prestretching strain); the resistance of PEDOT:PSS@PU nonwoven becomes constant after the irreversible change for the first 10 stretch-release cycles. Thereafter, the resistance of the nonwoven does not vary appreciably under stretch as long as the strain is within the prestretching strain. Therefore, the PEDOT:PSS@PU nonwoven can be used as a stretchable conductor within the prestretching strain. Circuits using sheet and twisted yarn of the nonwovens as electric conductors are demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b06726 | DOI Listing |
Front Microbiol
August 2025
Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
Medical interventions, such as masks, were a cornerstone in mitigating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since 2019, the scientific community has increasingly focused on exploring avenues for pandemic prevention and preparedness to enhance responses to future viral outbreaks. One such area of interest explores the use of additives, such as silicon nitride (Si₃N₄), in masks to enhance the antiviral properties of personal protective equipment.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia. Electronic address:
A novel smart textile swab was developed as an analytical tool for the onsite evaluation of biochemical changes in sweat toward potential applications in healthcare monitoring and drug testing. Betalain (BTA) was extracted from beetroot (Beta vulgaris L.) using a simple procedure.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Food Science and Agricultural Chemistry, McGill University, Quebec H9X 3V9, Canada.
Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
Due to the lack of suitable donors and concerns about immune rejection after transplantation, the demand for artificial organs among patients is increasing. Extracellular matrix-mimicking hydrogels provide excellent prospects for overcoming the limitations of current artificial organ construction methods. Here, a set of extracellular matrix-mimicking hydrogels derived from multiple animal tissues is described, which meets the regeneration needs of multiple tissues after xenotransplantation.
View Article and Find Full Text PDFAm J Infect Control
August 2025
Department of Food Science, 745 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907, USA. Electronic address:
Background: Transmission of healthcare-acquired infections from pathogens such as Staphylococcus aureus is still a concern in hospital environments. Proper cleaning and disinfection application methods are essential to mitigate the spread of pathogens. We hypothesized there would be significant differences in hygiene outcomes of the products, application methods, and wiping cloths.
View Article and Find Full Text PDF