Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A qudit (d-level quantum system) has a large Hilbert space and thus can be used to achieve many quantum information and communication tasks. Here, we propose a method to transfer arbitrary d-dimensional quantum states (known or unknown) between two superconducting transmon qudits coupled to a single cavity. The state transfer can be performed by employing resonant interactions only. In addition, quantum states can be deterministically transferred without measurement. Numerical simulations show that high-fidelity transfer of quantum states between two superconducting transmon qudits (d ≤ 5) is feasible with current circuit QED technology. This proposal is quite general and can be applied to accomplish the same task with natural or artificial atoms of a ladder-type level structure coupled to a cavity or resonator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539217PMC
http://dx.doi.org/10.1038/s41598-017-07225-5DOI Listing

Publication Analysis

Top Keywords

quantum states
16
superconducting transmon
12
arbitrary d-dimensional
8
d-dimensional quantum
8
states superconducting
8
circuit qed
8
transmon qudits
8
quantum
6
transferring arbitrary
4
states
4

Similar Publications

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.

View Article and Find Full Text PDF

Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

September 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.

View Article and Find Full Text PDF

Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO/Perovskite Interface.

J Phys Chem Lett

September 2025

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.

Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.

View Article and Find Full Text PDF