98%
921
2 minutes
20
Background: Sirolimus is a promising immunosuppressive drug for preventing the rejection of organ transplants. However, inter-individual variability in sirolimus pharmacokinetics causes adverse drug reactions, compromising therapeutic efficacy. Sirolimus is primarily metabolized by cytochrome CYP3A4 and CYP3A5. This study aimed to clarify the effect of CYP3A genetic polymorphisms, including the CYP3A4*1G and CYP3A5*3 polymorphisms, on the pharmacokinetics of sirolimus.
Methods: Thirty-one healthy Chinese volunteers were included in this study. Their genotypes were determined using the Sequenom MassARRAY iPLEX platform, and blood sirolimus concentrations at different time points were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pharmacokinetic parameters were calculated using WinNonlin version 5.2 software.
Results: The allele frequencies of CYP3A4*1G and CYP3A5*3 were 25.8% and 71.0%, respectively. In CYP3A4*1G carriers (n = 13), the area under the curve AUC0-144, AUC0-∞, and Cmax were significantly lower (P < 0.05) than CYP3A4*1/*1 homozygous subjects (n = 18). Briefly, the AUC0-144, AUC0-∞, and Cmax of *1G/*1G carrier were 315.2 ± 91.5, 372.0 ± 108.2, and 10.2 ± 1.6 ng/mL, respectively, and those of *1/*1 G*1/*1 G carrier were 440.8 ± 130.6, 537.4 ± 167.5, and 13.7 ± 4.3, respectively, whereas those of CYP3A4*1/*1 homozygous subjects were 540.2 ± 150.6, 626.6 ± 166.9, and 19.8 ± 7.5 ng/mL, respectively. In CYP3A5-nonexpressing subjects (*3/*3 homozygous carriers, n = 15), the AUC0-144 and Cmax were 549.6 ± 137.9 and 19.9 ± 7.9 ng/mL, respectively, and were significantly higher (P < 0.05) than the values in CYP3A5-expressing subjects (*1/*1homozygous carrier, n = 2; 314.2 ± 129.3 and 10.3 ± 2.2 ng/mL; *1/*3 heterozygous carrier, n = 15; 440.2 ± 146.3 and 14.6 ± 5.1 ng/mL, respectively).
Conclusions: CYP3A4 and CYP3A5 genetic polymorphisms are important factors affecting pharmacokinetic parameters of sirolimus. Our data support the monitoring of blood sirolimus concentrations, especially in CYP3A5*1 and CYP3A4*1 G carriers, to ensure accurate dosing in the clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FTD.0000000000000415 | DOI Listing |
Clin Pharmacol Ther
September 2025
Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada.
Pharmacogenomics enables the personalization of drug therapy by linking genetic variations to differences in drug metabolism, efficacy, and risk of adverse reactions. Genetic polymorphisms within cytochrome P450 (CYP) genes significantly affect enzyme activity, influencing drug plasma levels, responses, and safety. Central to this process is accurate genotype-to-phenotype translation, especially for the CYP enzyme family, which metabolizes 70-80% of clinically used drugs.
View Article and Find Full Text PDFDrug Des Devel Ther
September 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
Rivaroxaban is a direct oral anticoagulant (DOAC) that directly inhibits coagulation factor Xa and exerts its anticoagulant effects. Although rivaroxaban generally exhibits predictable pharmacokinetic (PK) and pharmacodynamic (PD) profiles, significant interindividual variability in therapeutic responses exists. Research on the role of genetic factors in the clinical variability of rivaroxaban is relatively new and extensive.
View Article and Find Full Text PDFAIDS Res Ther
August 2025
Medical and Scientific Research Centre, University of Ghana Medical Centre, Legon, Accra, Ghana.
Background: Human Immunodeficiency Virus and malaria are significant public health challenges in sub-Saharan Africa, contributing substantially to morbidity and mortality in the region. The trajectory of HIV and malaria mono- and coinfections may be different with presentations of drug-drug and disease-disease interactions. Current medications of artemether-lumefantrine and dolutegravir (DTG) -based anti-retroviral therapy which are the preferred drugs are metabolised by CYP2B6, CYP3A4/5 and UGTs which are polymorphic and may contribute to drug disposition and clinical outcomes.
View Article and Find Full Text PDFClin Transl Sci
September 2025
Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.
Tacrolimus is an immunosuppressive agent with difficult dosing due to a narrow therapeutic index and large interpatient pharmacokinetic variability, for which CYP3A5 variation plays a role. Tacrolimus/CYP3A5 pharmacogenetic guidelines exclude liver transplant patients with a donor/recipient CYP3A5 mismatch. We sought to determine the influence of donor vs.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico.
Paraoxonase 1 (PON1) is an antioxidant enzyme that plays physio-pathological roles. Prior in silico analysis revealed the presence of response elements of the nuclear receptor superfamily in the promoter, comparable to glucocorticoid receptors (GR), the vitamin D receptor (VDR), and the pregnenolone X receptor (PXR). The aim of this study was to evaluate the effects of 1α,25-dihydroxyvitamin D, a ligand specific to VDR, on the expression and activity of PON1 in hepatocarcinoma cells (HepG2 cells).
View Article and Find Full Text PDF