98%
921
2 minutes
20
Biodegradation rate of poly(lactic acid) (PLA) has been regulated, both increase and decrease with respect to the biodegradation of pure PLA, by embedding meager amount of inorganic salts in polymer matrix. Biodegradation is performed in enzyme medium on suspension and film and the extent of biodegradation is measured through spectroscopic technique which is also verified by weight loss measurement. Media pH has been controlled using trace amount of inorganic salt which eventually control the biodegradation of PLA. High performance liquid chromatography confirms the hydrolytic degradation of PLA to its monomer/oligomer. Induced pH by metal salts show maximum degradation at alkaline range (with calcium salt) while inhibition is observed in acidic medium (with iron salt). The pH of media changes the conformation of enzyme which in turn regulate the rate of biodegradation. Thermal degradation and increment of modulus indicate improvement in thermo-mechanical properties of PLA in presence of inorganic salts. Functional stability of enzyme with metal salts corresponding to acidic and alkaline pH has been established through a model to explain the conformational changes of the active sites of enzyme at varying pH influencing the rate of hydrolysis leading to regulated biodegradation of PLA. The tuned biodegradation has been applied for the controlled release of drug from the polymer matrix (both sustained and enhanced cumulative release as compared to pure polymer). The cell proliferation and adhesion are influenced by the acidic and basic nature of polymeric material tuned by two different inorganic salts showing better adhesion and proliferation in calcium based composite and, therefore, suggest biological use of these composites in biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2017.06.033 | DOI Listing |
J Org Chem
September 2025
Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. Ch
Catalytic C-N coupling reactions are among the most important bond-forming events in synthetic chemistry. Ammonium salts are economic and easily available inorganic compounds, serving as ideal nitrogen sources for nitrogen-containing organic compounds. The use of ammonium salts highlights the synthesis of -containing organic compounds from inorganic compounds.
View Article and Find Full Text PDFSmall
September 2025
Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
Redox-active organic-inorganic hybrid electrode materials are promising candidates for eco-friendly, high-energy-density supercapacitors. The synergy between organic and inorganic components in energy storage devices has attracted considerable interest due to their complementary attributes, including flexibility, long-term stability, and high conductivity. This study presents an innovative approach for synthesizing an organic-inorganic active electrode material by grafting diazonium salts of 8-aminoquinoline (8-AQ-N ) onto CuFeO nanoparticle (NP) surfaces.
View Article and Find Full Text PDFACS Omega
August 2025
University of North Dakota Energy & Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, North Dakota 58202-9018, United States.
Produced water (PW) generated from wells during crude oil production contains various inorganic chemicals some of which are considered critical minerals (CM). Through fluid characterization studies of 33 produced water samples in the Bakken Petroleum System of North Dakota, the Energy & Environmental Research Center (EERC) has quantified several CM, including barium, lithium, zinc, magnesium, manganese, and rubidium, at more than 95% frequency with cesium in 9% of the samples. The aim of this study was to test various carbon materials to ascertain their ability to remove these CM from the PW.
View Article and Find Full Text PDFACS Sens
September 2025
Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University Nanjing 210096, China.
Extracellular vesicles (EVs) have emerged as promising biomarkers in cancer diagnostics. However, rapid and nondestructive isolation of EVs from plasma remains challenging due to the presence of abundant interferents with smaller sizes (e.g.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2025
Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Organic electrode materials (OEMs) derived from natural quinones can enable sustainable lithium-ion batteries (LIBs) if their dissolution-induced capacity fading in organic electrolytes and their conductivity issues are addressed. It is demonstrated that converting natural anthraquinones (AQs) into organic alkali-metalated salts effectively inhibits their dissolution in aprotic electrolytes. For this purpose, a solubility indicator (ΔMPI) is developed, which reliably guides the selection of compatible OEMs and electrolytes.
View Article and Find Full Text PDF