Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Strain engineering is a very effective method to continuously tune the electronic, topological, optical and thermoelectric properties of materials. In this work, strain-dependent phonon transport of recently-fabricated antimonene (Sb monolayers) under biaxial strain is investigated using a combination of first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). It is found that the ZA dispersion of antimonene with strain less than -1% gives imaginary frequencies, which suggests that compressive strain can induce structural instability. Experimentally, it is possible to enhance structural stability by tensile strain. The calculated results show that lattice thermal conductivity increases with strain increasing from -1% to 6%, and lattice thermal conductivity at 6% strain is 5.6 times larger than that at -1% strain at room temperature. It is interesting that lattice thermal conductivity is inversely proportional to the buckling parameter h in a considered strain range. Such a strain dependence of lattice thermal conductivity is attributed to enhanced phonon lifetimes caused by increased strain, while group velocities have a decreased effect on lattice thermal conductivity with increasing strain. It is found that acoustic branches dominate the lattice thermal conductivity over the full strain range. The cumulative room-temperature lattice thermal conductivity at -1% strain converges to a maximum with the phonon mean free path (MFP) at 50 nm, while that at 6% strain becomes as large as 44 μm, which suggests that strain can give rise to very strong size effects on lattice thermal conductivity in antimonene. Finally, the increased lattice thermal conductivity caused by increasing strain can be explained by a reduced polarized covalent bond, inducing weak phonon anharmonicity. These results may provide guidance on fabrication techniques of group-VA element (As, Sb, Bi) monolayers, and offer perspectives on tuning lattice thermal conductivity by the size and strain for applications of thermal management and thermoelectricity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp02486jDOI Listing

Publication Analysis

Top Keywords

lattice thermal
40
thermal conductivity
40
strain
19
thermal
11
lattice
10
conductivity
10
phonon transport
8
-1% strain
8
strain range
8
increasing strain
8

Similar Publications

We report the design and in-orbit demonstration of a compact optical system for a 87Sr optical lattice clock aboard the Chinese Space Station. This system adopts a compact and robust vertically stacked architecture with a total volume of 0.11 m3 and a mass of 53.

View Article and Find Full Text PDF

Temperature-Resolved Crystallography Reveals Rigid-Body Dominance over Local Flexibility in B‑Factors.

ACS Omega

September 2025

Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.

The crystallographic B-factor (Bf), also known as the Debye-Waller factor (DWF) or temperature factor, relates to the mean-square displacement of the atoms (X). X may be composed of individual contributions from lattice disorder (LT), static conformational heterogeneity (H) throughout the lattice, rigid body vibration (RB), local conformational vibration (V), and zero-point atomic fluctuation (A). The Bf has been widely employed as a surrogate measure of local protein flexibility, although such relation has not been confirmed.

View Article and Find Full Text PDF

Tuning Interfacial Thermal Transport through Phase Engineering in 2D Ferroelectrics.

Small

September 2025

Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, China.

As a 2D material with distinctive ferroelectric properties, InSe offers significant potential for the applications in information memory and advanced data storage technologies. It also exhibits a complex phase diagram that is highly sensitive to temperature and pressure variations, resulting in diverse lattice configurations. While extensive studies have focused on the phase transition behavior of InSe, its impact on phonon transport remains largely unexplored.

View Article and Find Full Text PDF

Homo-layer flexible BiTe-based films with high thermoelectric performance.

Sci Adv

September 2025

Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen 518055, China.

Here, we demonstrate unconventional scalable and sustainable manufacturing of flexible n-type BiTe films via physical vapor deposition and homo-layer fusion engineering. The achieved ultrahigh power factor of up to 30.0 microwatts per centimeter per square kelvin and ultralow lattice thermal conductivity of 0.

View Article and Find Full Text PDF

Incorporation of MXene into BiS Matrix Promotes Better Electron Transport and Enhanced Thermoelectric Figure of Merit.

ACS Appl Mater Interfaces

September 2025

Plasmonics and Perovskites Laboratory, Department of Materials Science and Engineering, IIT Kanpur, Kanpur, U.P. 208016, India.

Contrary to the state-of-the-art thermoelectrics, such as tellurides and selenides, the thermoelectric performance of earth-abundant and less toxic BiS has been found to be inferior primarily because of poor electron transport. Herein, a less explored approach of composite formation using nanoinclusions of two-dimensional (2D) MXene, a graphene-analogous material, in BiS has been adopted to tailor the transport properties in order to obtain enhanced thermoelectric figure of merit (). Highly conductive stacked sheets of TiCT MXene, incorporated into the matrix of BiS, facilitate smoother electron transport, resulting in significantly enhanced electrical conductivity.

View Article and Find Full Text PDF