Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: (1) To evaluate the effect of cavity depth and composite type on the interfacial debonding in bulk-filled cavities. (2) To correlate the theoretical shrinkage stress and the level of interfacial debonding determined by acoustic emission (AE).

Methods: 80 sound molars were divided in two groups to receive a Class-I cavity (3.5×3.5mm) with 2.5- or 4.0-mm depth. The cavities were restored with either a conventional paste-like (Filtek Z100, 3M ESPE), a conventional flowable (G-ænial Universal Flo, GC), a bulk-fill paste-like (Tetric EvoCeram Bulk Fill, Ivoclar Vivadent) or a bulk-fill flowable (SDR, Dentsply) composite (n=10). AE signals were recorded from the start of curing for 20min. The cumulative number of AE events was correlated with the theoretical maximum shrinkage stress induced by each composite. Two samples from each group were scanned using micro-computed tomography (μCT) and qualitatively evaluated.

Results: Both composite type and cavity depth had a significant influence on the number of AE. The conventional paste-like composite generated significantly more AE than the other composites. The AE number increased sigmoidally in function of time, with a more rapid increase after a few seconds for the conventional composites than for the bulk-fill composites. A strong linear correlation was found between the predicted shrinkage stress values and the total number of AE events for both cavities depth. Representative μCT images showed larger de-bonding areas for 4.0-mm cavities and for conventional composites.

Significance: Premature interfacial or cohesive cracks can already develop during placement/curing of the composite. This might compromise the restoration integrity and in turn affect its survival in the long term. The amount AE events increased linearly with the theoretical maximum shrinkage stress of the composites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2016.12.012DOI Listing

Publication Analysis

Top Keywords

shrinkage stress
16
bulk-filled cavities
8
acoustic emission
8
cavity depth
8
composite type
8
interfacial debonding
8
conventional paste-like
8
number events
8
theoretical maximum
8
maximum shrinkage
8

Similar Publications

Osteoporosis is a prevalent metabolic bone disorder with complex molecular underpinnings. Emerging evidence implicates endoplasmic reticulum stress (ERS) in its pathogenesis; however, systematic exploration of ERS-related genes (ERSRGs) remains limited. This study aimed to identify ERS-related differentially expressed genes (ERSRDEGs) in osteoporosis, construct a diagnostic model, and elucidate associated molecular mechanisms.

View Article and Find Full Text PDF

Background: Protein lactylation has been implicated in stress-responsive cellular mechanisms, yet its role in lung transplantation-associated ischemia-reperfusion injury (IRI) remains undefined.

Methods: Transcriptomic profiles from GSE145989 were analyzed through differential expression analysis (limma) and weighted gene co-expression network analysis (WGCNA). Integrating the identified genes with lactylation-related signatures uncovered key lactylation-related genes (LRGs) as potential targets.

View Article and Find Full Text PDF

Ferroptosis has been implicated in skeletal muscle aging. Nevertheless, specific ferroptosis-related genes (FRGs) governing skeletal muscle aging remain unclear. The aim of this study was to identify ferroptosis-related marker genes associated with skeletal muscle aging, uncovering potential therapeutic targets for skeletal muscle aging.

View Article and Find Full Text PDF

Differentiating keratinocytes break down their organelles and nuclei to become the compacted cornified layers of the epidermal barrier in a poorly understood catabolic process. Live confocal imaging of stratified human organotypic epidermis revealed endoplasmic reticulum (ER) fragmentation and lysosomal engulfment in the cornifying layers, where we found up-regulation of TEX264, a receptor that mediates selective autophagy of the ER (reticulophagy). TEX264 expression was increased by ER stress, which caused precocious cornification of organotypic epidermis.

View Article and Find Full Text PDF

Effects of short-term exposure to environmentally relevant pesticides mixture on morphological alterations, oxidative-nitrative stress biomarkers, cellular apoptosis, and antioxidant expression in kidneys of goldfish.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA. Electronic address:

Chemical stressors are pervasive, affecting both terrestrial and aquatic environments. The continual influx of these toxins is damaging ecosystems and the organisms that inhabit them. The abundance of environmental toxins makes aquatic habitats inhospitable for aquatic life.

View Article and Find Full Text PDF