Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many RNA binding proteins (RBPs) bind specific RNA sequence motifs, but only a small fraction (∼15%-40%) of RBP motif occurrences are occupied in vivo. To determine which contextual features discriminate between bound and unbound motifs, we performed an in vitro binding assay using 12,000 mouse RNA sequences with the RBPs MBNL1 and RBFOX2. Surprisingly, the strength of binding to motif occurrences in vitro was significantly correlated with in vivo binding, developmental regulation, and evolutionary age of alternative splicing. Multiple lines of evidence indicate that the primary context effect that affects binding in vitro and in vivo is RNA secondary structure. Large-scale combinatorial mutagenesis of unfavorable sequence contexts revealed a consistent pattern whereby mutations that increased motif accessibility improved protein binding and regulatory activity. Our results indicate widespread inhibition of motif binding by local RNA secondary structure and suggest that mutations that alter sequence context commonly affect RBP binding and regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5107313PMC
http://dx.doi.org/10.1016/j.molcel.2016.08.035DOI Listing

Publication Analysis

Top Keywords

binding
9
rna sequence
8
sequence context
8
protein binding
8
binding regulation
8
motif occurrences
8
rna secondary
8
secondary structure
8
rna
6
context effects
4

Similar Publications

Discovery and Characterization of a Single-Component Halogenase for Phenazine Halogenation.

Org Lett

September 2025

Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.

Halogenated phenazines hold promise as antimicrobial and antibiofilm agents, yet are mainly accessed via chemical synthesis. Herein, we report PezW, a novel single-component flavin-dependent halogenase (FDH) that halogenates phenazine scaffolds, notably enabling enzymatic synthesis of bioactive 2-bromo-1-hydroxyphenazine () and 2,4-bromo-1-hydroxyphenazine (). Structural modeling and mutagenesis revealed key residues critical for substrate binding and catalysis.

View Article and Find Full Text PDF

Transcription factors (TFs) are essential proteins that regulate gene expression by specifically binding to transcription factor binding sites (TFBSs) within DNA sequences. Their ability to precisely control the transcription process is crucial for understanding gene regulatory networks, uncovering disease mechanisms, and designing synthetic biology tools. Accurate TFBS prediction, therefore, holds significant importance in advancing these areas of research.

View Article and Find Full Text PDF

Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites.

View Article and Find Full Text PDF

Noncompetitive Inhibition of DNA Polymerase β by a Nonnative Nucleotide.

J Org Chem

September 2025

Johns Hopkins University, Department of Chemistry, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

Base excision repair (BER) is a DNA repair pathway responsible for protecting the genome against modified nucleotides. DNA polymerase β (Pol β) participates in this process by removing the remnants of a damaged nucleotide and filling in the resulting gap. Pol β is overexpressed in some cancers and is synthetic lethal in cells deficient in BRCA1/2, providing additional impetus for identifying inhibitors of this enzyme.

View Article and Find Full Text PDF

Structural Dynamics of Dengue Virus UTRs and Their Cyclization.

Biophys J

September 2025

Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, Alberta, Canada; Department of Microbiology, Immunology

The dengue virus (DENV) poses a significant threat to human health, accounting for approximately 400 million infections each year. Its genome features a circular structure that facilitates replication through long-range RNA-RNA interactions, utilizing cyclization sequences located in the untranslated regions (UTRs). To gain new insights into the organization of the DENV genome, we purified the 5' and 3' UTRs of DENV in vitro and examined their structural and binding properties using various biophysical techniques combined with computational methods.

View Article and Find Full Text PDF