Base excision repair (BER) is a DNA repair pathway responsible for protecting the genome against modified nucleotides. DNA polymerase β (Pol β) participates in this process by removing the remnants of a damaged nucleotide and filling in the resulting gap. Pol β is overexpressed in some cancers and is synthetic lethal in cells deficient in BRCA1/2, providing additional impetus for identifying inhibitors of this enzyme.
View Article and Find Full Text PDFDNA-protein cross-links (DPCs) are cytotoxic lesions whose study in cells is complicated by the lack of exogenous agents that produce them selectively over DNA-DNA interstrand cross-links (ICLs). The synthesis and reactivity of a chimeric bis-electrophile (MEBAC) that is comprised of a highly reactive alkylating agent and a lysine selective -ethynyl benzaldehyde is described. DPC formation in nucleosome core particles (NCPs) by MEBAC is >40-times greater than that of ICLs.
View Article and Find Full Text PDFDuring replication, lagging strand lesions are initially encountered by high-fidelity DNA polymerase (pol) holoenzymes comprised of pol δ and the PCNA sliding clamp. To proceed unhindered, pol δ holoenzymes must bypass lesions without stalling. This entails dNMP incorporation opposite the lesion (insertion) and the 5' template deoxynucleotide (extension).
View Article and Find Full Text PDFUridine (rU) and 2'-deoxyuridine (dU) are common DNA lesions. dU is repaired through a base excision repair (BER) pathway initiated by uracil DNA glycosylase (UDG), while rU is typically removed from DNA via ribonucleotide excision repair, mediated by RNase H2. In this study, we report that rU is also repaired through the UDG-mediated BER pathway.
View Article and Find Full Text PDFSterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is an enzyme with diverse activities. Its dNTPase activity degrades all canonical dNTPs and many anticancer nucleoside drugs, while its single-stranded nucleic acid binding activity promotes DNA repair and RNA homeostasis in cells. These functions require guanine nucleotide binding to a specific allosteric site (A1) on the enzyme.
View Article and Find Full Text PDFDuring replication, lagging strand lesions are initially encountered by high-fidelity DNA polymerase (pol) holoenzymes comprised of pol δ and the PCNA sliding clamp. To proceed unhindered, pol δ holoenzymes must bypass lesions without stalling. This entails dNMP incorporation opposite the lesion (insertion) and the 5' template nucleotide (extension).
View Article and Find Full Text PDFFapy•dG (N6-(2-deoxy-α,β-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine) and 8-OxodGuo (8-oxo-7,8-dihydro-2'-deoxyguanosine) are major products of 2'-deoxyguanosine oxidation. Fapy•dG is unusual in that it exists as a dynamic mixture of anomers. Much less is known about the effects of Fapy•dG than 8-OxodGuo on transcriptional bypass.
View Article and Find Full Text PDFTandem lesions, which are defined by two or more contiguously damaged nucleotides, are a hallmark of ionizing radiation. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5-fdU) flanked by a 5'-8-OxodGuo or Fapy•dG were discovered, and they are more mutagenic in human cells than the isolated lesions. In the current study, we examined replication of these tandem lesions in .
View Article and Find Full Text PDFFormamidopyrimidine (Fapy•dG) is a major lesion arising from oxidation of dG that is produced from a common chemical precursor of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). In human cells, replication of single-stranded shuttle vectors containing Fapy•dG is more mutagenic than 8-OxodGuo. Here, we present the first data regarding promoter dependent RNA polymerase II bypass of Fapy•dG.
View Article and Find Full Text PDFThe major product of DNA-methylating agents, N7-methyl-2'-deoxyguanosine (MdG), is a persistent lesion , but it is not believed to have a large direct physiological impact. However, MdG reacts with histone proteins to form reversible DNA-protein cross-links (DPC), a family of DNA lesions that can significantly threaten cell survival. In this paper, we developed a tandem mass spectrometry method for quantifying the amounts of MdG and DPC in nuclear DNA by taking advantage of their chemical lability and the concurrent release of N7-methylguanine.
View Article and Find Full Text PDFN6-(2-deoxy-α,β-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood.
View Article and Find Full Text PDFOxidative DNA lesions cause significant detrimental effects on a living species. Two major DNA lesions resulting from dG oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) and formamidopyrimidine (Fapy·dG), are produced from a common chemical intermediate. Fapy·dG is formed in comparable yields under oxygen-deficient conditions.
View Article and Find Full Text PDFN6-(2-deoxy-α,β-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood.
View Article and Find Full Text PDFJ Am Chem Soc
November 2023
Radical cations (holes) produced in DNA by ionizing radiation and other oxidants yield DNA-protein cross-links (DPCs). Detailed studies of DPC formation in chromatin via this process are lacking. We describe here a comprehensive examination of DPC formation within nucleosome core particles (NCPs), which are the monomeric component of chromatin.
View Article and Find Full Text PDFModified nucleotides often hinder and/or decrease the fidelity of DNA polymerases. Tandem lesions, which are comprised of DNA modifications at two contiguous nucleotide positions, can be even more detrimental to genome stability. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5fdU) flanked at the 5'-position by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) or N-(2-deoxy-α,β-D-erythropentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy•dG) were discovered.
View Article and Find Full Text PDFSterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance.
View Article and Find Full Text PDFA 2'-deoxycytidin-4-yl radical (dC·), a strong oxidant that also abstracts hydrogen atoms from carbon-hydrogen bonds, is produced in a variety of DNA damaging processes. We describe here the independent generation of dC· from oxime esters under UV-irradiation or single electron transfer conditions. Support for this σ-type iminyl radical generation is provided by product studies carried out under aerobic and anaerobic conditions, as well as electron spin resonance (ESR) characterization of dC· in a homogeneous glassy solution at low temperature.
View Article and Find Full Text PDF7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-OxodGuo) is a ubiquitous DNA damage formed by oxidation of 2'-deoxyguanosine. In this study, plasmid DNA containing 8-OxodGuo located in three mutational hot spots of human cancers, codons 248, 249, and 273 of the tumor suppressor gene, was replicated in HEK 293T cells. 8-OxodGuo was only a weak block of replication, and the bypass was largely error-free.
View Article and Find Full Text PDFTreatment of HeLa cells with the DNA damaging agent, bleomycin (BLM), results in the formation of a nonenzymatic 5-methylene-2-pyrrolone histone covalent modification on lysine residues (K). K is much more electrophilic than other -acyllysine covalent modifications and post-translational modifications, including -acetyllysine (K). Using histone peptides containing K, we show that this modification inhibits the class I histone deacetylase, HDAC1, by reacting with a conserved cysteine (C261) located near the active site.
View Article and Find Full Text PDFAn electrophilic 5-methylene-2-pyrrolone modification (K ) is produced at lysine residues of histone proteins in nucleosome core particles upon reaction with a commonly formed DNA lesion (C4-AP). The nonenzymatic K modification is also generated in the histones of HeLa cells treated with the antitumor agent, bleomycin that oxidizes DNA and forms C4-AP. This nonenzymatic covalent histone modification has the same charge as the N-acetyllysine (K ) modification but is more electrophilic.
View Article and Find Full Text PDFPositively charged N-terminal histone tails play important roles in maintaining the nucleosome (and chromatin) structure and function. Charge alteration, including those imposed by post-translational modifications, impacts chromatin dynamics, protein binding, and the fate of DNA damage. There is evidence that N-terminal histone tails affect the local ionic environment within a nucleosome core particle (NCP), but this phenomenon is not well understood.
View Article and Find Full Text PDF6-(2-Deoxy-α,β-d--pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo.
View Article and Find Full Text PDFEvaluating the significance of various forms of DNA damage is complicated by discoveries that some lesions inactivate repair enzymes or produce more deleterious forms of damage. Histone lysines within nucleosomes react with the commonly produced C4'-oxidized abasic site (C4-AP) to concomitantly yield an electrophilic modification (K) on lysine and DNA strand scission. We developed a chemoproteomic approach to identify K in HeLa cells.
View Article and Find Full Text PDFDNA is damaged by various endogenous and exogenous sources, leading to a diverse group of reactive intermediates that yield a complex mixture of products. The initially formed products are often metastable and can react to yield lesions that are more biologically deleterious. Mechanistic studies are frequently carried out on free DNA as the substrate.
View Article and Find Full Text PDF