98%
921
2 minutes
20
Increased water demands in dry countries such as Australia, have led to increased adoption of various water reuse practices. Irrigation of greywater (all water discharged from the bathrooms, laundry and kitchen apart from toilet waste) is seen as a potential means of easing water demands; however, there is limited knowledge of how greywater irrigation impacts terrestrial and aquatic environments. This study compared four greywater irrigated residential lots to adjacent non-irrigated lots that acted as controls. Accumulation and potential impacts of metals in soil, groundwater and surface water, as a result of greywater irrigation, were assessed by comparing measured concentrations to national and international guidelines. Greywater increased concentrations of some metals in irrigated soil and resulted in As, B, Cr and Cu exceeding guidelines after only four years of irrigation. Movement of metals from the irrigation areas resulted in metal concentrations in groundwater (Al, As, Cr, Cu, Fe, Mn, Ni and Zn) and surface water (Cu, Fe and Zn) exceeding environmental quality guidelines again within four years. These results are unlikely to be universally applicable but indicate the need to consider metals in greywater in order to minimize potential adverse environmental effects from greywater irrigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2016.09.021 | DOI Listing |
An Acad Bras Cienc
September 2025
Federal University of Minas Gerais, Department of Sanitary and Environmental Engineering, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-010 Belo Horizonte, MG, Brazil.
Micro- and nanoplastics (MNPs) are emerging contaminants increasingly recognized for their environmental and health implications. While surface water systems have been extensively studied, the presence, behavior, and impacts of MNPs in groundwater remain underexplored, despite its critical role as water source worldwide. The findings in this review highlight that agricultural activities, particularly plastic mulches, pesticides containers, fertilizer bags, greenhouses, are major sources of MNP.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA.
Populations of the acidophilic purple nonsulfur bacterium were identified in two geographically distinct thermal areas in Yellowstone National Park (Wyoming, USA), as confirmed by 16S rRNA gene sequencing and detection of characteristic methoxylated ketocarotenoids. Microcosm-based carbon uptake assays where oxygenic photosynthesis was excluded via addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea yielded a light-driven dissolved inorganic carbon (DIC) assimilation rate (7 ± 2 mg C g C h) comparable to those of highly productive algal mats in acidic hot springs, suggesting that may be performing photoautotrophy at the time of the assay. Rates of acetate assimilation were more than two orders of magnitude lower than DIC assimilation and did not differ between light and dark treatments, indicating photoheterotrophic use of acetate was not occurring, though photoheterotrophic assimilation of other organic compounds cannot be excluded.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing 100083, China; Key Laboratory of Soil and Groundwater Pollution Control and Green Restoration, Sinopec, China.
Surfactant-enhanced aquifer remediation (SEAR) is an effective strategy for removing dense non-aqueous phase liquids (DNAPLs) from contaminated groundwater. While Gemini surfactants possess unique dimeric structures and excellent physicochemical properties, the role of hydrophobic chain length in governing their solubilization performance has not been systematically clarified. Here, five sugar-based anionic-nonionic Gemini surfactants (SANG 06, 08, 09, 10, and 13) with different hydrophobic chain lengths were synthesized and evaluated.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Ecohydrology and High Efficient Utilization of Water Resources, Hohhot, 010018, China; Inner Mongolia Section of the Yellow
Large-scale underground coal mining alters regional water cycles, yet the mechanisms governing interactions among water bodies in deep mining areas are poorly understood. For this purpose, by integrating hydrogen and oxygen isotopes, water levels, hydrogeological conditions, and end-member mixing analysis (EMMA), this study systematically analyzed and quantified the circulation and transformation mechanisms among different water bodies influenced by coal mining. Key findings reveal: (1) Mining-induced fractures disrupt the aquitard above the coal seam, establishing a direct hydraulic link between Zhiluo Formation confined groundwater and mine water, with the former contributing 87.
View Article and Find Full Text PDFEnviron Pollut
September 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Zhejiang Key Laboratory of Environment and Health of New Pollutants, School of Environment, Hangzhou Institute for Advanced Study, U
Per- and polyfluoroalkyl substances (PFAS) are extensively used in the petrochemical industry and pose considerable risks to the environment. However, systematic research on PFAS contamination in petrochemical industrial parks remains limited. This study focused on the occurrence, spatial distribution, and sources of 20 typical PFAS in soil (n = 19) and groundwater (n = 13) samples from a petrochemical industrial park in China.
View Article and Find Full Text PDF