Publications by authors named "Geoffrey D Will"

Increased water demands due to population growth and increased urbanisation have driven adoption of various water reuse practices. The irrigation of greywater (water from all household uses, except toilets) has been proposed as one potential sustainable practice. Research has clearly identified environmental harm from the presence of micro-pollutants in soils, groundwater and surface water.

View Article and Find Full Text PDF

Increased water demands in dry countries such as Australia, have led to increased adoption of various water reuse practices. Irrigation of greywater (all water discharged from the bathrooms, laundry and kitchen apart from toilet waste) is seen as a potential means of easing water demands; however, there is limited knowledge of how greywater irrigation impacts terrestrial and aquatic environments. This study compared four greywater irrigated residential lots to adjacent non-irrigated lots that acted as controls.

View Article and Find Full Text PDF

Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption, there is limited domestic knowledge of greywater reuse. There is no pressure to produce low-level phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis.

View Article and Find Full Text PDF

The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrrolidine, piperidine, isoindoline, and azaphenalene) were determined experimentally by cyclic voltammetry in acetonitrile, and also via high-level ab initio molecular orbital calculations. It is shown that the potentials are influenced by the type of ring system, ring substituents and/or groups surrounding the radical moiety. For the pyrrolidine, piperidine, and isoindolines there is excellent agreement (mean absolute deviation of 0.

View Article and Find Full Text PDF

The photooxidation of range of common organic pollutants in a dye-sensitised photoelectrochemical cell (DS-PEC) is reported. A photoanode was prepared by the chemisorption of a photosensitiser, cis-bis-(2,2)-bipyridine)-(4,4'-bis-(methyl)phosphonato-2,2'-bipyridine)ruthenium(II) dichloride ([Ru(bpy)2(dmpbpy]2+), to a nanoporous nanocrystalline TiO2 thin film on a conducting glass substrate. The photoanode was coupled to a platinum electroplated fluorine doped tin oxide glass substrate in a two electrode assembly and the cell cavity was filled with an aqueous solution of organic pollutants and irradiated with lambda>420 nm to give a measurable photocurrent.

View Article and Find Full Text PDF

The effect of microwave modification of colloidal TiO2 suspensions under extended periods of treatment is presented. The nanoparticulate TiO2 is compared and contrasted to similar convection hydrothermally treated TiO2 and a commercial titania product, namely Degussa P25. Microwave-treated samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy to determine their physicochemical characteristics.

View Article and Find Full Text PDF

Initial stages of two-dimensional crystal growth of the double-decker sandwich complex Lu(Pc*)2 [Pc* = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato] have been studied by scanning tunneling microscopy at the liquid/solid interface between 1-phenyloctane and highly oriented pyrolytic graphite. High-resolution images strongly suggest alignment of the double-decker molecules into monolayers with the phthalocyanine rings parallel to the surface. Domains were observed with either hexagonal or quadrate packing motifs, and the growing interface of the layer was imaged.

View Article and Find Full Text PDF

A photochemical system utilising a modular approach characterised through interpretation of photoelectrochemical measurements is discussed. A photoanode was prepared by the chemisorption of a photosensitiser, cis-bis-(2,2'-bipyridine)-(4,4'-bis-(methyl)phosphonato-2,2'-bipyridine)ruthenium(II) dichloride (RuL2L'2+), to a mixed nanoporous nanocrystalline RuO2:TiO2 thin film, calcined on a fluorine doped SnO2 conducting glass substrate. Similarly, an electron relay molecule, 1-ethyl-1'-(2-phosphonoethyl)-4,4'-bipyridinium dichloride (EVP), was covalently bound to a platinum electroplated nanoporous nanocrystalline TiO2 thin film, and the electrodes connected in a photoelectrocatalytic cell (PCC).

View Article and Find Full Text PDF