98%
921
2 minutes
20
The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrrolidine, piperidine, isoindoline, and azaphenalene) were determined experimentally by cyclic voltammetry in acetonitrile, and also via high-level ab initio molecular orbital calculations. It is shown that the potentials are influenced by the type of ring system, ring substituents and/or groups surrounding the radical moiety. For the pyrrolidine, piperidine, and isoindolines there is excellent agreement (mean absolute deviation of 0.05 V) between the calculated and experimental oxidation potentials; for the azaphenalenes, however, there is an extraordinary discrepancy (mean absolute deviation of 0.60 V), implying that their one-electron oxidation might involve additional processes not considered in the theoretical calculations. This recently developed azaphenalene class of nitroxide represents a new variant of a nitroxide ring fused to an aromatic system and details of the synthesis of five derivatives involving differing aryl substitution are also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo801099w | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFAntioxid Redox Signal
September 2025
Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis. The relationship between SIC and protein acetylation, particularly the balance between acetylation and deacetylation in cardiomyocyte subcellular structures, as well as how nuclear-mitochondrial coordination maintains standard antioxidant stress capacity, remains unclear. This study focused on exploring the nuclear-mitochondrial regulatory mechanisms formed by the interplay of Sirtuin 3 (SIRT3) and Forkhead box O3a (FOXO3a).
View Article and Find Full Text PDFNature
September 2025
Los Alamos National Laboratory, Los Alamos, NM, USA.
The Perseverance rover has explored and sampled igneous and sedimentary rocks within Jezero Crater to characterize early Martian geological processes and habitability and search for potential biosignatures. Upon entering Neretva Vallis, on Jezero Crater's western edge, Perseverance investigated distinctive mudstone and conglomerate outcrops of the Bright Angel formation. Here we report a detailed geological, petrographic and geochemical survey of these rocks and show that organic-carbon-bearing mudstones in the Bright Angel formation contain submillimetre-scale nodules and millimetre-scale reaction fronts enriched in ferrous iron phosphate and sulfide minerals, likely vivianite and greigite, respectively.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ave. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A sección, Alcaldía Iztapalapa, 09310 Mexico City, Mexico.
ConspectusWhat does the word antioxidant mean? Antioxidants are supposed to be nontoxic, versatile molecules capable of counteracting the damaging effects of oxidative stress (OS). Thus, when evaluating a candidate molecule as an antioxidant, several aspects should be considered. Antioxidants are more than free radical scavengers.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.
Alternating current (AC) electrolysis offers a promising strategy for modulating redox states in metal-catalyzed reactions, yet its mechanistic basis remains poorly understood. Here, we uncover how AC frequency synchronizes with key steps in a Ni-catalyzed cross-coupling cycle to control product selectivity between C-N and C-C coupling. We show that optimal C-N selectivity arises from minimizing the exposure of a key intermediate, Ni(Ar)Br, to reducing conditions that otherwise promote off-cycle Ni species and undesired C-C homocoupling.
View Article and Find Full Text PDF