Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effect of the stereochemistry of the sulfur atom on H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete H and C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrc.4524DOI Listing

Publication Analysis

Top Keywords

chemical shifts
8
shifts diasteromeric
8
cyclic sulfites
8
influence sulfur
4
sulfur configuration
4
configuration nmr
4
nmr chemical
4
diasteromeric five-membered
4
five-membered cyclic
4
sulfites stereochemistry
4

Similar Publications

Blueberry anthocyanins-functionalized hydrogel labels for smartphone-assisted real-time visual freshness monitoring of perishable proteins.

Talanta

September 2025

Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei Univer

Given rising consumer demands for meat safety and quality assurance, developing an intuitive, cost-effective, and user-friendly sensor platform for real-time monitoring of perishable meat freshness is important. Herein, this study developed an innovative chitosan/agarose/blueberry anthocyanin (CS/AG/BA) hydrogel label system for visual real-time freshness tracking of perishable proteins through smartphone-assisted colorimetric analysis. Through systematic optimization of CS/AG compositional ratios (3:7-7:3) and pH conditions (2.

View Article and Find Full Text PDF

Chocolates and other cocoa products represent a multibillion-dollar industry that has faced significant price increases, largely due to a surge in cocoa plant diseases linked to climate change. One potential solution for mitigating cocoa prices involves the use of cocoa butter equivalents, substitutes, or replacers. Consequently, a rapid method for simultaneously determining multiple properties of cocoa derivatives can serve as a valuable tool for research and development of new products, quality control, and regulatory agencies to ensure compliance with cocoa product standards.

View Article and Find Full Text PDF

Bimetallic FeNi-ZSM-5-catalyzed pyrolysis of photovoltaic waste: Selective and high-yield aromatic valorization for circular resource recovery.

Environ Res

September 2025

Guangdong Education Department Key Laboratory of Resources Comprehensive Utilization and Cleaner Production, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.

Catalytic pyrolysis, an efficient thermochemical process, offers a promising pathway to valorize thermoset photovoltaic backsheets (TPV) into high-value chemicals. This study investigates the ex situ catalytic pyrolysis of TPV using two acidic catalysts, ZSM-5 and FeNi-ZSM-5, under varied operational conditions, with a focus on product distribution and process efficiency. The catalytic intervention significantly enhanced pyrolysis performance.

View Article and Find Full Text PDF

While Dynamic Flux Balance Analysis provides a powerful framework for simulating metabolic behavior, incorporating operating conditions such as pH and temperature, which profoundly impact monoclonal antibodies production, remains challenging. This study presents an advanced dFBA model that integrates kinetic constraints formulated as functions of pH and temperature to predict CHO cell metabolism under varying operational conditions. The model was validated against data from 20 fed-batch experiments conducted in Ambr®250 bioreactors.

View Article and Find Full Text PDF

Succession-driven potential functional shifts in microbial communities in the Tire-plastisphere:Comparison of pristine and scrap tire.

Environ Pollut

September 2025

Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geog

Tire microplastics (TMPs) represent a major contributor to microplastic pollution, posing threats to aquatic ecosystems. As carbon-rich substrates, TMPs influence microbial colonization and ecological functions. This study investigates the impacts of pristine (P-TMPs) and scrap (S-TMPs) TMPs from the same brand on microbial communities within the tire-plastisphere.

View Article and Find Full Text PDF