A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Succession-driven potential functional shifts in microbial communities in the tire-plastisphere: Comparison of pristine and scrap tire. | LitMetric

Succession-driven potential functional shifts in microbial communities in the tire-plastisphere: Comparison of pristine and scrap tire.

Environ Pollut

Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geog

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tire microplastics (TMPs) represent a major contributor to microplastic pollution, posing threats to aquatic ecosystems. As carbon-rich substrates, TMPs influence microbial colonization and ecological functions. This study investigates the impacts of pristine (P-TMPs) and scrap (S-TMPs) TMPs from the same brand on microbial communities within the tire-plastisphere. We incubated wood particles, P-TMPs, and S-TMPs in situ in a lake environment for 60 days. Utilizing amplicon and metagenome sequencing, we analyzed structural and potential functional changes in microbial communities across five colonization time points. Our findings reveal that TMPs establish distinct ecological niches, functioning as hotspots of microbial activity in aquatic environments. Both niche specificity and colonization time significantly shape microbial community structure. During the early adaptation stage, we observed clustering patterns in both microbial composition and functional genes associated with the particles. Over time, divergent succession in community composition and potential function emerged, primarily driven by differences in substrate availability between niches. Notably, the substrate availability of S-TMPs promoted microbial community shifts, whereas the P-TMPs posed challenges to microbial adaptation. This study elucidates the long-term adaptive processes exhibited by microbial communities when colonizing the contrasting ecological niches represented by these two TMP states (pristine vs. scrap), documenting the progression from community structural change to functional adaptation. The results underscore the complexity of TMP impacts on microbial ecology and highlight the critical need for long-term monitoring to fully understand their environmental implications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2025.127074DOI Listing

Publication Analysis

Top Keywords

microbial communities
16
microbial
11
potential functional
8
communities tire-plastisphere
8
pristine scrap
8
colonization time
8
ecological niches
8
microbial community
8
substrate availability
8
succession-driven potential
4

Similar Publications