Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Salinity tolerance in plant species varies widely due to adaptation and acclimation processes at the cellular and whole-plant scales. In mangroves, extreme substrate salinity induces hydraulic failure and ion excess toxicity and reduces growth and survival, thus suggesting a potentially critical role for physiological acclimation to salinity. We tested the hypothesis that osmotic adjustment, a key type of plasticity that mitigates salinity shock, would take place in coordination with declines in whole-plant hydraulic conductance in a common garden experiment using saplings of three mangrove species with different salinity tolerances (Avicennia germinans L., Rhizophora mangle L. and Laguncularia racemosa (L.) C.F. Gaertn., ordered from higher to lower salinity tolerance). For each mangrove species, four salinity treatments (1, 10, 30 and 50 practical salinity units) were established and the time trajectories were determined for leaf osmotic potential (Ψ), stomatal conductance (g), whole-plant hydraulic conductance (K) and predawn disequilibrium between xylem and substrate water potentials (Ψ). We expected that, for all three species, salinity increments would result in coordinated declines in Ψ, g and K, and that the Ψ would increase with substrate salinity and time of exposure. In concordance with our predictions, reductions in substrate water potential promoted a coordinated decline in Ψ, g and K, whereas the Ψ increased substantially during the first 4 days but dissipated after 7 days, indicating a time lag for equilibration after a change in substratum salinity. Our results show that mangroves confront and partially ameliorate acute salinity stress via simultaneous reductions in Ψ, g and K, thus developing synergistic physiological responses at the cell and whole-plant scales.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpw073DOI Listing

Publication Analysis

Top Keywords

salinity
13
salinity tolerance
8
whole-plant scales
8
substrate salinity
8
whole-plant hydraulic
8
hydraulic conductance
8
mangrove species
8
species salinity
8
substrate water
8
osmotic hydraulic
4

Similar Publications

11 years of controlled-release potassium fertilization reshaped maize ecosystems and drove sustainable soil quality: insights from physical-chemical-biological interactions.

J Environ Manage

September 2025

National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Tai'an, 271018, China.

Excessive use of conventional potassium chloride (KCl) fertilizer has led to soil degradation problems such as compaction and salinization. While controlled-release potassium chloride (CRK) fertilizer has the potential to enhance crop productivity and mitigate these problems, its impact on soil quality (SQ) remains unclear. In this study, four potassium (K) fertilization treatments were established: no K application (CK), conventional KCl fertilizer (CRK0), 50 % substitution with CRK (CRK0.

View Article and Find Full Text PDF

Sustainable Antimicrobial Silver@MXene Nanofiber Membranes for Enhanced Photothermal Membrane Distillation Performance.

ACS Appl Mater Interfaces

September 2025

Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Solar-driven desalination has emerged as a sustainable and efficient solution for addressing global water scarcity, especially beneficial in remote, off-grid, and disaster-affected regions. Among emerging technologies, photothermal membrane distillation (PMD) stands out due to its effective solar-energy conversion, scalability, and simplicity. Here, we report a hybrid PMD membrane fabricated by electrospinning MXene (TiCT) nanosheets integrated with silver nanoparticles (AgNPs) onto a poly(vinylidene fluoride--hexafluoropropylene) (PH) substrate.

View Article and Find Full Text PDF

Soil contamination with salinity and heavy metals such as cadmium (Cd) is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizobacteria PGPR and organic agents such as salicylic acid (SA) are considered major protectants to alleviate abiotic stresses, the study of these bacteria and organic acids to ameliorate the toxic effects of salinity and Cd remains limited. Therefore, the present study was conducted to investigate the individual and combined effects of PGPR and SA on enhancing the phytoremediation of salinity (100 mM NaCl) and Cd (50 µM CdCl₂) using rice ( L.

View Article and Find Full Text PDF

Marine heatwaves (MHWs) are increasing in frequency and intensity worldwide, significantly impacting marine ecosystems. However, studies on phytoplankton community changes in coastal waters under such conditions remain. In the summer of 2024, an extreme high-temperature event (>28 °C) occurred in the southern coastal waters of Korea, providing an opportunity to investigate phytoplankton community dynamics under thermal stress.

View Article and Find Full Text PDF

TaGW2-TaVOZ1 module regulates wheat salt tolerance via both E3 ligase-dependent and -independent pathways.

Sci Adv

September 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.

Wheat production is limited by the rapid expansion of salinized arable land worldwide. Identification of the molecular mechanisms that underlie the salt stress response is of great importance. Here, we uncovered the NAC-type transcription factor, TaVOZ1, as a positive regulator of wheat salt tolerance.

View Article and Find Full Text PDF