98%
921
2 minutes
20
Wheat production is limited by the rapid expansion of salinized arable land worldwide. Identification of the molecular mechanisms that underlie the salt stress response is of great importance. Here, we uncovered the NAC-type transcription factor, TaVOZ1, as a positive regulator of wheat salt tolerance. Its overexpression could enhance yield and biomass production under salt stress, while knockdown attenuates salt tolerance. TaVOZ1 transcriptionally activates stress-responsive genes, especially -family transporters, decreasing shoot Na accumulation. However, the RING-type E3 ligase, TaGW2, directly interacts with and ubiquitinates TaVOZ1, promoting its ubiquitin/26 proteasomal degradation. overexpression reduces salt tolerance, while its knockdown or knockout enhances wheat response to salt stress. Moreover, we found a moonlight function of TaGW2 wherein it binds the same DNA motifs as TaVOZ1 to block its up-regulation of -family genes while coordinately governing both the salt tolerance and grain yield. This study highlights the functional versatility of TaGW2 and defines an antagonistic TaGW2-TaVOZ1 regulatory module in wheat salt tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/sciadv.adw3985 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412643 | PMC |
New Phytol
September 2025
National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Heterosis holds great potential for improving yield, quality, and environmental adaptability in crop breeding, which suggests that hybrids can exhibit better performance in adapting to extreme environments. However, the epigenetic mechanisms of salt-tolerant heterosis in allopolyploid crop Brassica napus (AACC, 2n = 38), particularly chromatin accessibility, remain largely unexplored. We investigated the dynamics of chromatin accessibility and transcriptional reprogramming during a time course of salt exposure in Brassica napus hybridization.
View Article and Find Full Text PDFSci Adv
September 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
Wheat production is limited by the rapid expansion of salinized arable land worldwide. Identification of the molecular mechanisms that underlie the salt stress response is of great importance. Here, we uncovered the NAC-type transcription factor, TaVOZ1, as a positive regulator of wheat salt tolerance.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
Clostridium butyricum has gained attention as a probiotic in aquaculture due to its ability to improve growth, gut health, and immune function. However, most strains currently used are derived from non-aquatic sources, which may limit their colonization and efficacy in fish. In this study, a novel strain, C.
View Article and Find Full Text PDFMar Biotechnol (NY)
September 2025
Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
Litopenaeus vannamei exhibits strong salinity adaptation; however, its survival and growth are significantly reduced in freshwater environments. To investigate the response mechanisms of L. vannamei to freshwater conditions, gill tissues from shrimp cultured for 30 days in both freshwater and seawater environments were used as experimental material in this study.
View Article and Find Full Text PDFPlant Sci
September 2025
Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China. Electronic address:
Salt stress is one of the main abiotic stresses that affects plant growth and development, as well as crop yield. A large number of studies have reported that the WRKY gene family plays significant roles in the plant responses to salt stress, but the underlying mechanisms remain largely unknown, and research on WRKY proteins in sorghum is also limited. In this study, we identified the sorghum gene SbWRKY51, which encodes a group II WRKY transcription factor.
View Article and Find Full Text PDF