A model assessment of the ability of lake water in Terra Nova Bay, Antarctica, to induce the photochemical degradation of emerging contaminants.

Chemosphere

Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy; Università degli Studi di Torino, Centro Interdipartimentale NatRisk, Via L. Da Vinci 44, 10095 Grugliasco, TO, Italy. Electronic address:

Published: November 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The shallow lakes located in Terra Nova Bay, Antarctica, are free from ice for only up to a couple of months (mid December to early/mid February) during the austral summer. In the rest of the year, the ice cover shields the light and inhibits the photochemical processes in the water columns. Previous work has shown that chromophoric dissolved organic matter (CDOM) in these lakes is very reactive photochemically. A model assessment is here provided of lake-water photoreactivity in field conditions, based on experimental data of lake water absorption spectra, chemistry and photochemistry obtained previously, taking into account the water depth and the irradiation conditions of the Antarctic summer. The chosen sample contaminants were the solar filter benzophenone-3 and the antimicrobial agent triclosan, which have very well known photoreactivity and have been found in a variety of environmental matrices in the Antarctic continent. The two compounds would have a half-life time of just a few days or less in the lake water during the Antarctic summertime, largely due to reaction with CDOM triplet states ((3)CDOM*). In general, pollutants that occur in the ice and could be released to lake water upon ice melting (around or soon after the December solstice) would be quickly photodegraded if they undergo fast reaction with (3)CDOM*. With some compounds, the important (3)CDOM* reactions might favour the production of harmful secondary pollutants, such as 2,8-dichlorodibenzodioxin from the basic (anionic) form of triclosan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.07.049DOI Listing

Publication Analysis

Top Keywords

lake water
16
model assessment
8
terra nova
8
nova bay
8
bay antarctica
8
water
6
assessment ability
4
lake
4
ability lake
4
water terra
4

Similar Publications

Degradation and ecological risk of a novel neonicotinoid insecticide imidaclothiz in aquatic environments: Kinetics, photodegradation and hydrolysis pathways, mechanism and metabolites toxicity evaluation.

Pestic Biochem Physiol

November 2025

Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U

Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.

View Article and Find Full Text PDF

Conservation planning for environmental water to climate refugia in the manageable Murray-Darling Basin.

J Environ Manage

September 2025

Centre for Applied Water Science, University of Canberra, ACT, Australia; Department of Zoology, University of Otago, Dunedin, New Zealand.

One mechanism for improving the resilience of freshwater systems affected by climate change is to use environmental water to support refugial habitats which allow species, ecosystems and functions to persist and recover after severe droughts. We applied systematic conservation planning (SCP) to prioritise wetlands and lakes with the aim of informing the delivery of environmental water for the creation and protection of refugia habitat in the Murray-Darling Basin, Australia. SCP uses a complimentary algorithm to generate planning solutions that protect all target ecological assets for the lowest "cost" of the management constraints considered.

View Article and Find Full Text PDF

Succession-driven potential functional shifts in microbial communities in the Tire-plastisphere:Comparison of pristine and scrap tire.

Environ Pollut

September 2025

Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geog

Tire microplastics (TMPs) represent a major contributor to microplastic pollution, posing threats to aquatic ecosystems. As carbon-rich substrates, TMPs influence microbial colonization and ecological functions. This study investigates the impacts of pristine (P-TMPs) and scrap (S-TMPs) TMPs from the same brand on microbial communities within the tire-plastisphere.

View Article and Find Full Text PDF

A comprehensive framework of health risk assessment for antibiotic resistance in aquatic environments: Status, progress, and perspectives.

J Hazard Mater

September 2025

Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.

Antibiotic resistance (AR), driven by antibiotics as emerging pollutants, has become a critical global health threat, jeopardizing both environmental and human health. The persistence and spread of AR in aquatic ecosystems are governed by the intricate interplay between antibiotics, antibiotic resistance genes (ARGs), and antibiotic-resistant bacteria (ARB), which collectively influences its occurrence, transportation, and fate in aquatic ecosystems. However, most assessments focus primarily on antibiotics and ARGs, often relying on single-factor criteria while overlooking critical influence factors such as ARG forms, non-antibiotic chemicals, antibiotic pressure, and microbial competition.

View Article and Find Full Text PDF

Unraveling the GHG emission patterns of inland waters in China: impact of water body types, aquatic plant life forms, and water temperature.

J Environ Manage

September 2025

Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China. Electronic address:

Inland water ecosystems play key roles in the production, transportation, transformation, storage, and consumption of global greenhouse gases (GHG). Different water body types exhibit spatial and temporal differences after considering factors such as season and aquatic plant life forms. The results revealed that the annual global warming potential (GWP) (Tg CO-eq yr) from swamps, rivers, lakes, and reservoirs in China were 1382.

View Article and Find Full Text PDF