98%
921
2 minutes
20
Rationale: Denitrification (the reduction of oxidized forms of inorganic nitrogen (N) to N2 O and N2 ) from upland soils is considered to be the least well-understood process in the global N cycle. The main reason for this lack of understanding is that the terminal product (N2 ) of denitrification is extremely difficult to measure against the large atmospheric background.
Methods: We describe a system that combines the (15) N-tracer technique with a 40-fold reduced N2 (2% v/v) atmosphere in a fully automated incubation setup for direct quantification of N2 and N2 O emissions. The δ(15) N values of the emitted N2 and N2 O were determined using a custom-built gas preparation unit that was connected to a DELTA V Plus isotope ratio mass spectrometer. The system was tested on a pasture soil from sub-tropical Australia under different soil moisture conditions and combined with (15) N tracing in extractable soil N pools to establish a full N balance.
Results: The method proved to be highly sensitive for detecting N2 (1.12 μg N h(-1) kg(-1) dry soil (ds)) and N2 O (0.36 μg N h(-1) kg(-1) ds) emissions. The main end product of denitrification in the investigated soil was N2 O for both water contents, with N2 accounting for only 3% to 13% of the total denitrification losses. Between 90 and 95% of the added (15) N fertiliser could be recovered in N gases and extractable soil N pools.
Conclusions: The high and N2 O-dominated denitrification rates found in this study are pointing at both the high ecological and the agronomic importance of denitrification in subtropical pasture soils. The new system allows for a direct and highly sensitive detection of N2 and N2 O fluxes from soils and may help to significantly improve our mechanistic understanding of N cycling and denitrification in terrestrial agro-ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.7689 | DOI Listing |
Water Res
August 2025
Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.
Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China.
Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing,100875, China. Electronic address:
Rivers reflect natural-anthropogenic interactions, yet how urbanization affects riverine bacterial communities along rural-urban gradients is poorly understood. This study examined bacterial diversity and assembly mechanisms along such a gradient of river sediments. Results showed that bacterial diversity significantly decreased with increasing urban influence.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium.
Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.
View Article and Find Full Text PDFSci Total Environ
September 2025
School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India. Electronic address:
Biochar-based slow-release fertilizers (BSRFs) offer a promising alternative to conventional fertilizers by enhancing nutrient retention and reducing environmental loss. This study aimed to develop a sustainable and cost-effective BSRF through the co-pyrolysis of wheat straw (WS), bentonite and nutrient solution containing KHPO and KNO. WS and bentonite were blended in 50:50 and 70:30 ratios with fixed doses of nutrients, then co-pyrolyzed (at 350 °C and 500 °C) to produce BSRFs.
View Article and Find Full Text PDF