IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services.

Int Sch Res Notices

Department of Computer Science and Engineering, National Institute of Technology, Rourkela 769008, India.

Published: July 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897059PMC
http://dx.doi.org/10.1155/2014/653131DOI Listing

Publication Analysis

Top Keywords

intelligent junction
8
junction selection
8
selection based
8
based routing
8
routing protocol
8
link connectivity
8
helping vehicle
8
junction
6
ijs
4
ijs intelligent
4

Similar Publications

Delivering therapeutics across the blood-brain barrier (BBB) remains a major challenge in ischemic stroke therapy. Ischemic stroke induces upregulation of various inflammatory membrane receptors on brain endothelial cells, offering potential entry points for receptor-mediated transcytosis. This study proposes a universal targeting strategy by employing inflammatory pathway antagonists as targeting ligands, which broadens the spectrum of available ligands beyond traditional receptor-binding molecules.

View Article and Find Full Text PDF

Enhanced Giant Ferroelectric Tunneling Electroresistance in 2D Ruddlesden-Popper Oxides.

ACS Nano

September 2025

Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Ferroelectric tunnel junctions (FTJs) based on ferroelectric switching and quantum tunneling effects with thickness down to a few unit cells have been explored for applications of two-dimensional (2D) electronic devices in data storage and neural networks. As a key performance indicator, the enhanced tunneling electrosistance (TER) ratio provides a broader dynamic range for precise modulation of synaptic weights, improving the stability and accuracy of neural networks. Herein, we report an observation of pronounced enhancement in the TER ratio by over 4 orders of magnitude through the fabrication of large-scale heterostructures combining bismuth ferrite with two-dimensional Ruddlesden-Popper oxide BiFeO.

View Article and Find Full Text PDF

Superlinear photodetectors hold significant potential in intelligent optical detection systems, such as near-field imaging. However, their current realization imposes stringent requirements on photosensitive materials, thereby limiting the flexibility of the device integration for practical applications. Herein, a tunable superlinear GaO deep-ultraviolet gate-all-around (GAA) phototransistor based on a p-n heterojunction has been proposed.

View Article and Find Full Text PDF

Plasmonic biosensor enabled by resonant quantum tunnelling.

Nat Photonics

June 2025

Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Metasurfaces provide an ideal platform for optical sensing because they produce strong light-field confinement and enhancement over extended regions that allow us to identify deep-subwavelength layers of organic and inorganic molecules. However, the requirement of using external light sources involves bulky equipment that hinders point-of-care applications. Here we introduce a plasmonic sensor with an embedded source of light provided by quantum tunnel junctions.

View Article and Find Full Text PDF

MPTN: A video-based multi-point tracking network for atrioventricular junction detection and tracking in cardiovascular magnetic resonance imaging.

Comput Methods Programs Biomed

August 2025

CardioVascular Systems Imaging and Artificial Intelligence Lab, National Heart Centre Singapore, Singapore; Duke-NUS Medical School, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore. Electronic address:

Background And Objective: To develop an end-to-end artificial intelligence solution-video-based Multi-Point Tracking Network (MPTN), for detecting and tracking atrioventricular junction (AVJ) points from cardiovascular magnetic resonance and deriving AVJ motion parameters.

Methods: The MPTN model consists of two modules: AVJ point detection and AVJ motion tracking. The detection module utilizes convolutional-based feature extraction and elastic regression to detect all candidate AVJ points.

View Article and Find Full Text PDF