98%
921
2 minutes
20
MicroRNAs (miRNAs), small noncoding RNAs 19-22 nucleotides in length, play a major role in negative regulation of gene expression at the posttranscriptional level. Several miRNAs act as tumor suppressors or oncogenes that control cell differentiation, proliferation, apoptosis, or angiogenesis during tumorigenesis. To date, 19 research groups have published large-scale expression profiles that identified 261 miRNAs differentially expressed in bladder cancer, of which 76 were confirmed to have consistent expression patterns by two or more groups. These consistently expressed miRNAs participated in regulation of multiple biological processes and factors, including axon guidance, cancer-associated proteoglycans, and the ErbB and transforming growth factorbeta signaling pathways. Because miRNAs can be released from cancer cells into urine via secreted particles, we propose that miRNAs differentially expressed between tissue and urine could serve as predictors of bladder cancer, and could thus be exploited for noninvasive diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910763 | PMC |
http://dx.doi.org/10.4111/icu.2016.57.S1.S52 | DOI Listing |
Biochem Biophys Res Commun
August 2025
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China. Electronic address:
Background: H1N1 influenza virus can cause diffuse alveolar damage, such as pneumonia and pulmonary fibrosis, when it infects the respiratory tract. Metformin not only improves chronic inflammation but also has direct anti-inflammatory effects. Therefore, the focus of this study was on the molecular mechanism and regulatory mechanism of metformin against influenza virus in alleviating lung disease.
View Article and Find Full Text PDFInt Dent J
September 2025
Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Chin
Introduction And Aims: Pulpitis is a chronic inflammatory disease affecting oral health. We aim to identify immune-related lncRNAs via bioinformatics analyses and explore their functions through ceRNA networks.
Methods: The expression profiles of 6 patients with pulpitis and 8 normal dental pulp have been obtained from Genome Sequence Archive.
Clin Cosmet Investig Dermatol
August 2025
Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.
Background: Vitiligo is an acquired depigmentary disorder caused by the loss of functional melanocytes. Increasing evidence suggests that competing endogenous RNA (ceRNA) interactions participate in this process, yet their global architecture in vitiligo remains unclear.
Objective: To delineate a long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA ceRNA network associated with vitiligo and to identify blood-borne RNA markers with diagnostic potential.
Front Oncol
August 2025
Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.
Objective: This study aims to explore the association between plasma exosomal miRNAs and the development of radiation pneumonitis (RP) in non-small cell lung cancer (NSCLC) patients who underwent radiotherapy, and develop a predictive model for symptomatic radiation pneumonitis (SRP) by integrating miRNA expression levels with clinical and dosimetric parameters.
Methods: A total of 95 NSCLC patients, who were scheduled to receive definitive radiotherapy, were prospectively enrolled. Plasma exosomes were collected before the radiotherapy, and high-throughput sequencing followed by bioinformatics analysis was performed to identify the candidate miRNAs associated to SRP.
J Inflamm Res
August 2025
Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
Background: Oral lichen planus (OLP) is T cell-mediated inflammatory disease affecting the oral mucosa, and its molecular mechanism remains poorly understood.
Objective: This study aimed to screen for OLP-related hub genes and construct a network of competing endogenous RNAs (ceRNAs) to explore the crucial mechanisms involved in the disease.
Methods: Proteomic and transcriptomic sequencing were performed on oral mucosa collected from OLP patients and healthy participants, respectively.