98%
921
2 minutes
20
Brassinosteroids (BRs) and abscisic acid (ABA) are plant hormones that antagonistically regulate many aspects of plant growth and development; however, the mechanisms that regulate the crosstalk of these two hormones are still not well understood. BRs regulate plant growth and development by activating BRASSINAZOLE RESISTANT 1 (BZR1) family transcription factors. Here we show that the crosstalk between BRs and ABA signalling is partially mediated by BZR1 regulated gene expression. bzr1-1D is a dominant mutant with enhanced BR signalling; our results showed that bzr1-1D mutant is less sensitive to ABA-inhibited primary root growth. By RNA sequencing, a subset of BZR1 regulated ABA-responsive root genes were identified. Of these genes, the expression of a major ABA signalling component ABA INSENSITIVE 5 (ABI5) was found to be suppressed by BR and by BZR1. Additional evidences showed that BZR1 could bind strongly with several G-box cis-elements in the promoter of ABI5, suppress the expression of ABI5 and make plants less sensitive to ABA. Our study demonstrated that ABI5 is a direct target gene of BZR1, and modulating the expression of ABI5 by BZR1 plays important roles in regulating the crosstalk between the BR and ABA signalling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.12763 | DOI Listing |
J Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary. Electronic address:
A wild relative of wheat is goatgrass (Aegilops biuncialis Vis., Ae.b.
View Article and Find Full Text PDFJ Plant Physiol
September 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:
RAV transcription factors play roles in a variety of diverse biological processes. However, their role in rice's response to drought and blast stress remains largely unexplored. In this study, we performed a genome-wide characterization and identification of rice RAV transcription factor family genes.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou, 350002, People's Republic of China.
GA participates in FR light-induced internode elongation of cucumber by regulating the expression of genes/proteins related to aquaporins, expansins, cell wall biosynthesis, hormone metabolism, and signal transduction. This study investigated the effects of the interaction between far-red (FR) light and gibberellin (GA) on the internode elongation of cucumber (Cucumis sativus L. 'Zhongnong No.
View Article and Find Full Text PDFInt J Eat Disord
September 2025
Department of Physiology, Monash University, Clayton, Victoria, Australia.
Objective: Converging evidence from neuroimaging studies and genome-wide association study (GWAS) suggests the involvement of prefrontal cortex (PFC) and striatum dysfunction in the pathophysiology of anorexia nervosa (AN). However, identifying the causal role of circuit-specific genes in the development of the AN-like phenotype remains challenging and requires the combination of novel molecular tools and preclinical models.
Methods: We used the activity-based anorexia (ABA) rat model in combination with a novel viral-based translating ribosome affinity purification (TRAP) technique to identify transcriptional differences within a specific neural pathway that we have previously demonstrated to mediate pathological weight loss in ABA rats (i.