Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Four organic sensitizers (LI-68-LI-71) bearing various conjugated bridges were designed and synthesized, in which the only difference between LI-68 and LI-69 (or LI-70 and LI-71) was the absence/presence of the CN group as the auxiliary electron acceptor. Interestingly, compared to the reference dye of LI-68, LI-69 bearing the additional CN group exhibited the bad performance with the decreased Jsc and Voc values. However, once one thiophene moiety near the anchor group was replaced by pyrrole with the electron-rich property, the resultant LI-71 exhibited a photoelectric conversion efficiency increase by about 3 folds from 2.75% (LI-69) to 7.95% (LI-71), displaying the synergistic effect of the two moieties (CN and pyrrole). Computational analysis disclosed that pyrrole as the auxiliary electron donor (D') in the conjugated bridge can compensate for the lower negative charge in the electron acceptor, which was caused by the CN group as the electron trap, leading to the more efficient electron injection and better photovoltaic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b00226DOI Listing

Publication Analysis

Top Keywords

photovoltaic performance
8
li-68 li-69
8
auxiliary electron
8
electron acceptor
8
group
5
electron
5
additional electron-withdrawing
4
electron-withdrawing cyano
4
cyano group
4
group conjugation
4

Similar Publications

Energy production from renewable resources remains a leading focus in sustainable power generation. Recently, bifacial photovoltaic (BPV) systems have gained global attention for their enhanced energy yield. In this study, seashell waste was repurposed as an alternative reflector material for BPV modules.

View Article and Find Full Text PDF

Differentiating the 2D Passivation from Amorphous Passivation in Perovskite Solar Cells.

Nanomicro Lett

September 2025

College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.

The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.

View Article and Find Full Text PDF

Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.

View Article and Find Full Text PDF

Interface Engineering Based on Naphthyl Isomerization for High-Efficiency and Stable Perovskite Solar Cells: Theoretical Simulation and Experimental Research.

Small

September 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.

Perovskites have a large number of intrinsic defects and interface defects, which often lead to non-radiative recombination, and thus affect the efficiency of perovskite solar cells (PSCs). Introducing appropriate passivators between the perovskite layer and the transport layer for defect modification is crucial for improving the performance of PSCs. Herein, two positional isomers, 1-naphthylmethylammonium iodide (NMAI) and 2-naphthylmethylammonium iodide (NYAI) are designed.

View Article and Find Full Text PDF

Molecular Extrusion Drives Polymer Dynamic Soft Encapsulation to Inhibit Lead Leakage for Efficient Inverted Perovskite Solar Cells and Modules.

Adv Mater

September 2025

School of Physical Science and Technology, College of Energy, School of Optoelectronic Science and Engineering, Soochow University, Suzhou, 215000, P. R. China.

Polymer additives exhibit unique advantages in suppressing lead leaching from perovskite solar cells (PSCs). However, polymers tend to excessively aggregate in the perovskite film, which hinders comprehensive encapsulation and disrupts charge transport efficiency, degrading lead leakage inhibition and device performance. Herein, a polymer dynamic soft encapsulation strategy driven by molecular extrusion is introduced to mitigate lead leakage in PSCs, achieved through the incorporation of poly(propylene adipate) (PPA) as a multifunctional additive in the perovskite formulation.

View Article and Find Full Text PDF