98%
921
2 minutes
20
Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson's disease (PD). We present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by EM and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel, in-register β-sheets and hydrophobic-core residues, and with substantial complexity arising from diverse structural features including an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a new orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as supported by the structural similarity of early-onset-PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules, to aid in PD diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034296 | PMC |
http://dx.doi.org/10.1038/nsmb.3194 | DOI Listing |
Nature
September 2025
Research Center for Industries of the Future, Westlake University, Hangzhou, China.
The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2025
National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
The development of analytical techniques applicable to powdered pharmaceutical co-crystals, including those containing excipients, represents a comprehensive strategy for quality control in both drug development and regulatory settings. This study investigates the structural characterization of indomethacin-nicotinamide co-crystals using a combination of microcrystal electron diffraction (microED), solid-state NMR (SSNMR), Raman spectroscopy, and powder X-ray diffraction (PXRD). MicroED analysis revealed the crystal structure of the co-crystal, while SSNMR measurements provided insights into the molecular interactions within the structure.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
August 2025
School of Chemistry, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel. Electronic address:
Geopolymers are aluminosilicate materials that exhibit effective immobilization properties for low-level radioactive nuclear waste, and more specifically for the immobilization of radioactive cesium. The identification of the cesium-binding sites and their distribution between the different phases making up the geopolymeric matrix can be obtained using solid-state NMR measurements of the quadrupolar spin Cs, which is a surrogate for the radioactive cesium species present in nuclear waste streams. For quadrupolar nuclei, acquiring two-dimensional multiple-quantum experiments allows the acquisition of more dispersed spectra when multiple sites overlap.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
August 2025
Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA. Electronic address:
Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) is a method for determining the crystal structures of organic solids. To date, our two previous QNMRX-CSP studies have relied upon on Cl solid-state NMR (SSNMR) spectroscopy, powder X-ray diffraction (PXRD), Monte-Carlo simulated annealing (MC-SA), and dispersion-corrected density functional theory (DFT-D2∗) calculations for the determination of crystal structures for organic HCl salts with known crystal structures, in order to benchmark the method and subject it to blind tests. Herein, we apply QNMRX-CSP for the de novo crystal structure determination of L-alaninamide HCl (L-Ala-NH), for which no crystal structure has been reported, using Cl SSNMR and PXRD data for structural prediction and refinement, along with C and N SSNMR data for subsequent structural validation.
View Article and Find Full Text PDF