Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrP) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid--maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrP and amyloid-β oligomers (Aβo). We show that PSCMA can induce reentrant LLPS of PrP and lower the saturation concentration () of PrP by 100-fold.
View Article and Find Full Text PDFThe function of a protein is predicated upon its three-dimensional fold. Representing its complex structure as a series of repeating secondary structural elements is one of the most useful ways by which we study, characterize, and visualize a protein. Consequently, experimental methods that quantify the secondary structure content allow us to connect a protein's structure to its function.
View Article and Find Full Text PDFProtein phase separation by low-complexity, intrinsically disordered domains generates membraneless organelles and links to neurodegeneration. Cellular prion protein (PrP) contains such domains, causes spongiform degeneration, and is a receptor for Alzheimer's amyloid-β oligomers (Aβo). Here, we show that PrP separates as a liquid phase, in which α-helical Thr become unfolded.
View Article and Find Full Text PDFNat Struct Mol Biol
May 2016
Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson's disease (PD). We present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by EM and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel, in-register β-sheets and hydrophobic-core residues, and with substantial complexity arising from diverse structural features including an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a new orthogonal Greek-key topology.
View Article and Find Full Text PDFSolid-state NMR spectroscopy (SSNMR) is an established and invaluable tool for the study of amyloid fibril structure with atomic-level detail. Optimization of the homogeneity and concentration of fibrils enhances the resolution and sensitivity of SSNMR spectra. Here, we present a fibrillization and fibril processing protocol, starting from purified monomeric α-synuclein, that enables the collection of high-resolution SSNMR spectra suitable for site-specific structural analysis.
View Article and Find Full Text PDFStandard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2015
Gold nanoparticles (Au NPs) have attracted much attention due to their potential applications in nano-medicine. While numerous studies have quantified biomolecular adsorption to Au NPs in terms of equilibrium binding constants, far less is known about biomolecular orientation on nanoparticle surfaces. In this study, the binding of the protein α-synuclein to citrate and (16-mercaptohexadecyl) trimethylammonium bromide (MTAB) coated 12 nm Au NPs is examined by heteronuclear single quantum coherence NMR spectroscopy to provide site-specific measurements of protein-nanoparticle binding.
View Article and Find Full Text PDFNat Chem Biol
May 2014
For over 50 years, amphotericin has remained the powerful but highly toxic last line of defense in treating life-threatening fungal infections in humans with minimal development of microbial resistance. Understanding how this small molecule kills yeast is thus critical for guiding development of derivatives with an improved therapeutic index and other resistance-refractory antimicrobial agents. In the widely accepted ion channel model for its mechanism of cytocidal action, amphotericin forms aggregates inside lipid bilayers that permeabilize and kill cells.
View Article and Find Full Text PDF