98%
921
2 minutes
20
Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nchem.2441 | DOI Listing |
Mater Horiz
September 2025
TU Delft, Netherlands.
Soft wearable sensors offer promising potential for advanced diagnostics, therapeutics, and human-machine interfaces. Unlike conventional devices that are bulky and rigid, often compromising skin integrity, comfort, and user compliance, soft wearable sensors are flexible, conformable, and better suited to the dynamic skin surface. This improved mechanical integration enhances signal fidelity and device performance, while also enabling safer, more comfortable, and continuous physiological monitoring in real-world environments.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
The potential of hafnia-based ferroelectric materials for Ferroelectric Random Access Memory (FeRAM) applications is limited by the imprint effect, which compromises readout reliability. Here, we systematically investigate the asymmetric imprint behavior in W/HfZrO/W ferroelectric capacitors, demonstrating that the imprint direction correlates directly with the ferroelectric polarization state. Notably, a pre-pulse of specific polarity can temporarily suppress the imprint effect.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Programmable Biomaterials Laboratory, Institute of Materials, Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
The nanoscale spatial arrangement of T cell receptor (TCR) ligands critically influences their activation potential in CD8 T cells, yet a comprehensive understanding of the molecular landscape induced by engagement with native peptide-MHC class I (pMHC-I) remains incomplete. Using DNA origami nanomaterials, we precisely organize pMHC-I molecules into defined spatial configurations to systematically investigate the roles of valencies, inter-ligand spacings, geometric patterns, and molecular flexibility in regulating T cell function. We find that reducing the inter-ligand spacing to ∼7.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Owing to their distinctive thickness and physical attributes, two-dimensional (2D) materials have exhibited considerable promise in the field of microelectronic devices. Notably, 2D magnetic materials that maintain long-range magnetic order and can be readily modulated by external fields have garnered substantial attention. However, CrSBr, despite being a 2D van der Waals (vdW) semiconducting magnet with an appropriate band gap and stability in air, faces significant hindrance for practical utilization due to its Curie temperature () of 146 K.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.
View Article and Find Full Text PDF