98%
921
2 minutes
20
Aptasensing of small molecules remains a challenge as detection often requires the use of labels or signal amplification methodologies, resulting in both difficult-to-prepare sensor platforms and multistep, complex assays. Furthermore, many aptasensors rely on the binding mechanism or structural changes associated with target capture by the aptameric probe, resulting in a detection scheme customized to each aptamer. It is in this context that we report herein a sensitive cocaine aptasensor that offers both real-time and label-free measurement capabilities. Detection relies on the electromagnetic piezoelectric acoustic sensor (EMPAS) platform. The sensing interface consists of a S-(11-trichlorosilyl-undecanyl)benzenethiosulfonate (BTS) adlayer-coated quartz disc onto which a structure-switching cocaine aptamer (MN6) is immobilized, completing the preparation of the MN6 cocaine aptasensor (M6CA). The EMPAS system has recently been employed as the foundation of a cocaine aptasensor based on a structurally rigid cocaine aptamer variant (MN4), an aptasensor referred to by analogy as M4CA. M6CA represents a significant increase in terms of analytical performance, compared to not only M4CA but also other cocaine aptamer-based sensors that do not rely on signal amplification, producing an apparent K(d) of 27 ± 6 μM and a 0.3 μM detection limit. Remarkably, the latter is in the range of that achieved by cocaine aptasensors relying on signal amplification. Furthermore, M6CA proved to be capable not only of regaining its cocaine-binding ability via simple buffer flow over the sensing interface (i.e., without the necessity to implement an additional regeneration step, such as in the case of M4CA), but also of detecting cocaine in a multicomponent matrix possessing potentially assay-interfering species. Finally, through observation of the distinct shape of its response profiles to cocaine injection, demonstration was made that the EMPAS system in practice offers the possibility to distinguish between the binding mechanisms of structure-switching (MN6) vs rigid (MN4) aptameric probes, an ability that could allow the EMPAS to provide a more universal aptasensing platform than what is ordinarily observed in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b04010 | DOI Listing |
Anal Methods
September 2025
Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.
View Article and Find Full Text PDFAnal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDFAnal Chem
September 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361
Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).
View Article and Find Full Text PDFAnal Chem
September 2025
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.
View Article and Find Full Text PDFDiabetologia
September 2025
Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.
View Article and Find Full Text PDF