98%
921
2 minutes
20
Conventional protocols for differentiating human induced-pluripotent stem cells (hiPSCs) into smooth-muscle cells (SMCs) can be inefficient and generally fail to yield cells with a specific SMC phenotype (i.e., contractile or synthetic SMCs). Here, we present two novel hiPSC-SMC differentiation protocols that yield SMCs with predominantly contractile or synthetic phenotypes. Flow cytometry analyses of smooth-muscle actin (SMA) expression indicated that ~45% of the cells obtained with each protocol assumed an SMC phenotype, and that the populations could be purified to ~95% via metabolic selection. Assessments of cellular mRNA and/or protein levels indicated that SMA, myosin heavy chain II, collagen 1, calponin, transgelin, connexin 43, and vimentin expression in the SMCs obtained via the Contractile SMC protocol and in SMCs differentiated via a traditional protocol were similar, while SMCs produced via the Sythetic SMC protocol expressed less calponin, more collagen 1, and more connexin 43. Differences were also observed in functional assessments of the two SMC populations: the two-dimensional surface area of Contractile SMCs declined more extensively (to 12% versus 44% of original size) in response to carbachol treatment, while quantification of cell migration and proliferation were greater in Synthetic SMCs. Collectively, these data demonstrate that our novel differentiation protocols can efficiently generate SMCs from hiPSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714916 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147155 | PLOS |
J Am Heart Assoc
September 2025
Department of Neurosurgery Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing China.
Background: The cellular composition and molecular mechanisms of the pathological arteries in Moyamoya disease (MMD) remain poorly understood. To improve our understanding of pathogenesis in MMD, we aimed to comprehensively map the cellular composition and molecular alterations within the pathological arteries of patients with MMD.
Methods: Superficial temporal artery samples were collected from patients with MMD (n=2) and healthy controls (n=3), yielding a total of 26 371 cells that were used for single-cell RNA sequencing.
Injury
August 2025
Sheba Medical Center, Israel; James Cook University, Queensland, Australia; Department of Medicine, University of Melbourne, Australia.
Introduction: Mass casualty incidents (MCIs) involving extensive ballistic and explosive injuries place considerable pressure on healthcare resources. This study aimed to evaluate the rehabilitation resources required for individuals who sustained blast and ballistic injuries during an MCI.
Methods: A retrospective review was conducted using Electronic Medical Records (EMRs) of patients admitted to Sheba Medical Center (SMC), Israel, following an MCI on 7 October 2023.
Objective- Surgically created upper extremity arteriovenous fistulae (AVF) are the preferred vascular access for patients requiring dialysis. It is estimated, however, that 50% of AVF fail within one year due to aggressive neointimal hyperplasia, which significantly increases morbidity and mortality. Matrix metalloproteinase-3 (MMP-3), also known as stromelysin-1, is a member of the metalloproteinase family that plays a critical role in the pathogenesis of many human disorders by degrading extracellular matrix and regulating molecular signaling pathways.
View Article and Find Full Text PDFUnlabelled: The neurovascular unit is critical for brain health, and its dysfunction has been linked to Alzheimer's disease (AD). However, a cell-type-resolved understanding of how diverse vascular cells become dysfunctional and contribute to disease has been missing. Here, we applied Vessel Isolation and Nuclei Extraction for Sequencing (VINE-seq) to build a comprehensive transcriptomic atlas from 101 individuals along AD progression.
View Article and Find Full Text PDFBiomater Sci
September 2025
Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.
Directional cell migration by pulmonary arterial cells (PACs) is one of the important features of diseases involving arterial remodeling, such as pulmonary arterial hypertension (PAH), a disease that is often characterized by reduced arterial compliance and increased extracellular matrix (ECM) stiffening. However, there are no therapeutics that can halt the directional cell migration of PACs in PAH. The inability to identify drug targets or drugs against the directional cell migration during PAH pathogenesis stems from an incomplete understanding of the process and a lack of effective translational models for screening of candidate small molecules.
View Article and Find Full Text PDF