Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A data driven methodology is developed for tracking the collective influence of the multiple attributes of alloying elements on both thermodynamic and mechanical properties of metal alloys. Cobalt-based superalloys are used as a template to demonstrate the approach. By mapping the high dimensional nature of the systematics of elemental data embedded in the periodic table into the form of a network graph, one can guide targeted first principles calculations that identify the influence of specific elements on phase stability, crystal structure and elastic properties. This provides a fundamentally new means to rapidly identify new stable alloy chemistries with enhanced high temperature properties. The resulting visualization scheme exhibits the grouping and proximity of elements based on their impact on the properties of intermetallic alloys. Unlike the periodic table however, the distance between neighboring elements uncovers relationships in a complex high dimensional information space that would not have been easily seen otherwise. The predictions of the methodology are found to be consistent with reported experimental and theoretical studies. The informatics based methodology presented in this study can be generalized to a framework for data analysis and knowledge discovery that can be applied to many material systems and recreated for different design objectives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683530PMC
http://dx.doi.org/10.1038/srep17960DOI Listing

Publication Analysis

Top Keywords

high dimensional
8
periodic table
8
mapping chemical
4
chemical selection
4
selection pathways
4
pathways designing
4
designing multicomponent
4
multicomponent alloys
4
alloys informatics
4
informatics framework
4

Similar Publications

Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.

View Article and Find Full Text PDF

3D isotropic FastView MRI localizer allows reliable torsion measurements of the lower limb.

Eur Radiol Exp

September 2025

Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany.

Computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used to assess femoral and tibial torsion. While CT offers high spatial resolution, it involves ionizing radiation. MRI avoids radiation but requires multiple sequences and extended acquisition time.

View Article and Find Full Text PDF

Reversible Manipulations of Triangular-Shaped Mirror Twin Boundary Loops in Ultrathin NiTe.

Nano Lett

September 2025

School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.

High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.

View Article and Find Full Text PDF

Achieving high performance nanoscale photonic functionalities remains extraordinarily challenging when using naturally derived biomaterials. The ability to manipulate ultrathin films of structural proteins─combined with photolithographic control of their polymorphism─unlocks a compelling route toward engineering biopolymer-based photonic crystals with precisely defined photonic bandgaps and reconfigurable structural colors. In this work, we describe a robust, water-based fabrication process for silk/inorganic hybrid one-dimensional (1D) photonic crystals that overcomes many of the conventional difficulties in ensuring reproducibility, uniformity, and reliability at the nanoscale.

View Article and Find Full Text PDF

The aim of the study was to validate a new method for semiautomatic subtraction of [Tc]Tc-sestamibi and [Tc]NaTcO SPECT 3-dimensional datasets using principal component analysis (PCA) against the results of parathyroid surgery and to compare its performance with an interactive method for visual comparison of images. We also sought to identify factors that affect the accuracy of lesion detection using the two methods. Scintigraphic data from [Tc]Tc-sestamibi and [Tc]NaTcO SPECT were analyzed using semiautomatic subtraction of the 2 registered datasets based on PCA applied to the region of interest including the thyroid and an interactive method for visual comparison of the 2 image datasets.

View Article and Find Full Text PDF