Mapping of soil nutrient parameters using experimental measurements and geostatistical approaches to assist site-specific fertiliser advisories is anticipated to play a significant role in Smart Agriculture. FarmerZone is a cloud service envisioned by the Department of Biotechnology, Government of India, to provide advisories to assist smallholder farmers in India in enhancing their overall farm production. As a part of the project, we evaluated the soil spatial variability of three potato agroecological zones in India and provided soil health cards along with field-specific fertiliser recommendations for potato cultivation to farmers.
View Article and Find Full Text PDFThis work introduces a novel approach to remotely count and monitor potato plants in high-altitude regions of India using an unmanned aerial vehicle (UAV) and an artificial intelligence (AI)-based deep learning (DL) network. The proposed methodology involves the use of a self-created AI model called PlantSegNet, which is based on VGG-16 and U-Net architectures, to analyze aerial RGB images captured by a UAV. To evaluate the proposed approach, a self-created dataset of aerial images from different planting blocks is used to train and test the PlantSegNet model.
View Article and Find Full Text PDFGlobal climate change is increasing both average temperatures and the frequencies of extreme high temperatures. Past studies have documented a strong negative effect of exposures to temperatures >30°C on hybrid maize yields. However, these studies could not disentangle genetic adaptation via artificial selection from changes in agronomic practices.
View Article and Find Full Text PDFRapid and automated identification of blight disease in potato will help farmers to apply timely remedies to protect their produce. Manual detection of blight disease can be cumbersome and may require trained experts. To overcome these issues, we present an automated system using the Mask Region-based convolutional neural network (Mask R-CNN) architecture, with residual network as the backbone network for detecting blight disease patches on potato leaves in field conditions.
View Article and Find Full Text PDFThe tassel of the maize plant is responsible for the production and dispersal of pollen for subsequent capture by the silk (stigma) and fertilization of the ovules. Both the amount and timing of pollen shed are physiological traits that impact the production of a hybrid seed. This study describes an automated end-to-end pipeline that combines deep learning and image processing approaches to extract tassel flowering patterns from time-lapse camera images of plants grown under field conditions.
View Article and Find Full Text PDFMachine learning-based plant phenotyping systems have enabled high-throughput, non-destructive measurements of plant traits. Tasks such as object detection, segmentation, and localization of plant traits in images taken in field conditions need the machine learning models to be developed on training datasets that contain plant traits amidst varying backgrounds and environmental conditions. However, the datasets available for phenotyping are typically limited in variety and mostly consist of lab-based images in controlled conditions.
View Article and Find Full Text PDFPlant Physiol
January 2019
Because structural variation in the inflorescence architecture of cereal crops can influence yield, it is of interest to identify the genes responsible for this variation. However, the manual collection of inflorescence phenotypes can be time consuming for the large populations needed to conduct genome-wide association studies (GWAS) and is difficult for multidimensional traits such as volume. A semiautomated phenotyping pipeline, TIM (Toolkit for Inflorescence Measurement), was developed and used to extract unidimensional and multidimensional features from images of 1,064 sorghum () panicles from 272 genotypes comprising a subset of the Sorghum Association Panel.
View Article and Find Full Text PDFNat Plants
September 2017
Phenotypic plasticity describes the phenotypic variation of a trait when a genotype is exposed to different environments. Understanding the genetic control of phenotypic plasticity in crops such as maize is of paramount importance for maintaining and increasing yields in a world experiencing climate change. Here, we report the results of genome-wide association analyses of multiple phenotypes and two measures of phenotypic plasticity in a maize nested association mapping (US-NAM) population grown in multiple environments and genotyped with ~2.
View Article and Find Full Text PDFRemarkable productivity has been achieved in crop species through artificial selection and adaptation to modern agronomic practices. Whether intensive selection has changed the ability of improved cultivars to maintain high productivity across variable environments is unknown. Understanding the genetic control of phenotypic plasticity and genotype by environment (G × E) interaction will enhance crop performance predictions across diverse environments.
View Article and Find Full Text PDFA data driven methodology is developed for tracking the collective influence of the multiple attributes of alloying elements on both thermodynamic and mechanical properties of metal alloys. Cobalt-based superalloys are used as a template to demonstrate the approach. By mapping the high dimensional nature of the systematics of elemental data embedded in the periodic table into the form of a network graph, one can guide targeted first principles calculations that identify the influence of specific elements on phase stability, crystal structure and elastic properties.
View Article and Find Full Text PDFFeature extraction from Atom Probe Tomography (APT) data is usually performed by repeatedly delineating iso-concentration surfaces of a chemical component of the sample material at different values of concentration threshold, until the user visually determines a satisfactory result in line with prior knowledge. However, this approach allows for important features, buried within the sample, to be visually obscured by the high density and volume (~10(7) atoms) of APT data. This work provides a data driven methodology to objectively determine the appropriate concentration threshold for classifying different phases, such as precipitates, by mapping the topology of the APT data set using a concept from algebraic topology termed persistent simplicial homology.
View Article and Find Full Text PDFUltramicroscopy
December 2015
Identifying nanoscale chemical features from atom probe tomography (APT) data routinely involves adjustment of voxel size as an input parameter, through visual supervision, making the final outcome user dependent, reliant on heuristic knowledge and potentially prone to error. This work utilizes Kernel density estimators to select an optimal voxel size in an unsupervised manner to perform feature selection, in particular targeting resolution of interfacial features and chemistries. The capability of this approach is demonstrated through analysis of the γ / γ' interface in a Ni-Al-Cr superalloy.
View Article and Find Full Text PDFMaterials (Basel)
January 2013
This paper highlights the capability of materials informatics to recreate "property phase diagrams" from an elemental level using electronic and crystal structure properties. A judicious selection of existing data mining techniques, such as Principal Component Analysis, Partial Least Squares Regression, and Correlated Function Expansion, are linked synergistically to predict bandgap and lattice parameters for different stoichiometries of GaInAsSb, starting from fundamental elemental descriptors. In particular, five such elemental descriptors, extracted from within a database of highly correlated descriptors, are shown to collectively capture the widely studied "bowing" of energy bandgaps seen in compound semiconductors.
View Article and Find Full Text PDF