Publications by authors named "Lakshmi Attigala"

Global climate change is increasing both average temperatures and the frequencies of extreme high temperatures. Past studies have documented a strong negative effect of exposures to temperatures >30°C on hybrid maize yields. However, these studies could not disentangle genetic adaptation via artificial selection from changes in agronomic practices.

View Article and Find Full Text PDF
Article Synopsis
  • The accuracy of trait measurements is crucial for genetic analyses, and errors in automated phenotyping can be influenced by genetic factors, contrary to the belief that they are purely random.
  • A study on maize tassel traits showed that genetic contributions to measurement errors vary based on the plant's branching architecture, which is also genetically controlled.
  • Additionally, findings from genome-wide association studies (GWAS) revealed that trait-associated SNPs differ significantly between manual and automated measurements, indicating that some measurement errors are indeed genetically determined.
View Article and Find Full Text PDF

Grass leaf shape is a strong indicator of their habitat with linear leaves predominating in open areas and ovate leaves distinguishing forest-associated grasses. This pattern among extant species suggests that ancestral shifts between forest and open habitats may have coincided with changes in leaf shape or size. We tested relationships between habitat, climate, photosynthetic pathway, and leaf shape and size in a phylogenetic framework to evaluate drivers of leaf shape and size variation over the evolutionary history of the family.

View Article and Find Full Text PDF

Because structural variation in the inflorescence architecture of cereal crops can influence yield, it is of interest to identify the genes responsible for this variation. However, the manual collection of inflorescence phenotypes can be time consuming for the large populations needed to conduct genome-wide association studies (GWAS) and is difficult for multidimensional traits such as volume. A semiautomated phenotyping pipeline, TIM (Toolkit for Inflorescence Measurement), was developed and used to extract unidimensional and multidimensional features from images of 1,064 sorghum () panicles from 272 genotypes comprising a subset of the Sorghum Association Panel.

View Article and Find Full Text PDF

We explored phylogenetic relationships among the twelve lineages of the temperate woody bamboo clade (tribe Arundinarieae) based on plastid genome (plastome) sequence data. A representative sample of 28 taxa was used and maximum parsimony, maximum likelihood and Bayesian inference analyses were conducted to estimate the Arundinarieae phylogeny. All the previously recognized clades of Arundinarieae were supported, with Ampelocalamus calcareus (Clade XI) as sister to the rest of the temperate woody bamboos.

View Article and Find Full Text PDF

Premise Of The Study: Programs that are user-friendly and freely available for developing Web-based interactive keys are scarce and most of the well-structured applications are relatively expensive. WEBiKEY was developed to enable researchers to easily develop their own Web-based interactive keys with fewer resources.

Methods And Results: A Web-based multiaccess identification tool (WEBiKEY) was developed that uses freely available Microsoft ASP.

View Article and Find Full Text PDF

Background: Bambusoideae (Poaceae) comprise three distinct and well-supported lineages: tropical woody bamboos (Bambuseae), temperate woody bamboos (Arundinarieae) and herbaceous bamboos (Olyreae). Phylogenetic studies using chloroplast markers have generally supported a sister relationship between Bambuseae and Olyreae. This suggests either at least two origins of the woody bamboo syndrome in this subfamily or its loss in Olyreae.

View Article and Find Full Text PDF