98%
921
2 minutes
20
Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668301 | PMC |
http://dx.doi.org/10.1155/2015/161648 | DOI Listing |
Protein Cell
August 2025
Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
Cardiovascular disease (CVD) research is hindered by limited comprehensive analyses of plasma proteome across disease subtypes. Here, we systematically investigated the associations between plasma proteins and cardiovascular outcomes in 53,026 UK Biobank participants over a 14-year follow-up. Association analyses identified 3,089 significant associations involving 892 unique protein analytes across 13 CVD outcomes.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
Introduction: We compared and measured alignment between the Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard used by electronic health records (EHRs), the Clinical Data Interchange Standards Consortium (CDISC) standards used by industry, and the Uniform Data Set (UDS) used by the Alzheimer's Disease Research Centers (ADRCs).
Methods: The ADRC UDS, consisting of 5959 data elements across eleven packets, was mapped to FHIR and CDISC standards by two independent mappers, with discrepancies adjudicated by experts.
Results: Forty-five percent of the 5959 UDS data elements mapped to the FHIR standard, indicating possible electronic obtainment from EHRs.
Obesity (Silver Spring)
September 2025
Division of Hematology, Oncology, and Palliative Care, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
Objective: From October 18-20, 2022, the National Institutes of Health held a workshop to examine the state of the science concerning obesity interventions in adults to promote health equity. The workshop had three objectives: (1) Convene experts from key institutions and the community to identify gaps in knowledge and opportunities to address obesity, (2) generate recommendations for obesity prevention and treatment to achieve health equity, and (3) identify challenges and needs to address obesity prevalence and disparities, and develop a diverse workforce.
Methods: A three-day virtual convening.
Stroke
September 2025
Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China (H.Z., K.H., Q.G.).
Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.
Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.
Dan Med J
August 2025
Department of Dermatology, Zealand University Hospital, Roskilde.
Introduction: Tinea pedis is a common disease that affects up to 70% of adults during a lifetime. Most cases are caused by Trichophyton species. Worldwide, terbinafine resistance among dermatophytes is rising, which is concerning as terbinafine is the first-line treatment.
View Article and Find Full Text PDF