Activation of AMPA receptor in the infralimbic cortex facilitates extinction and attenuates the heroin-seeking behavior in rats.

Neurosci Lett

Laboratory of Behavioral Neuroscience, Ningbo Institute of Microcirculation and Henbane, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo 315010, Zhejiang Province, PR China. Electronic address:

Published: January 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Infralimbic cortex (IL) is proposed to suppress cocaine seeking after extinction, but whether the IL regulates the extinction and reinstatement of heroin-seeking behavior is unknown. To address this issue, the male SD rats were trained to self-administer heroin under a FR1 schedule for consecutive 14 days, then the rats underwent 7 daily 2h extinction session in the operant chamber. The activation of IL by microinjection PEPA, an allosteric AMPA receptor potentiator into IL before each of extinction session facilitated the extinction responding after heroin self-administration, but did not alter the locomotor activity in an open field testing environment. Other rats were first trained under a FR1 schedule for heroin self-administration for 14 days, followed by 14 days of extinction training, and reinstatement of heroin-seeking induced by cues was measured for 2h. Intra-IL microinjecting of PEPA at 15min prior to test inhibited the reinstatement of heroin-seeking induced by cues. Moreover, the expression of GluR1 in the IL and NAc remarkably increased after treatment with PEPA during the reinstatement. These finding suggested that activation of glutamatergic projection from IL to NAc shell may be involved in the extinction and reinstatement of heroin-seeking.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2015.11.024DOI Listing

Publication Analysis

Top Keywords

reinstatement heroin-seeking
16
ampa receptor
8
infralimbic cortex
8
extinction
8
heroin-seeking behavior
8
extinction reinstatement
8
rats trained
8
fr1 schedule
8
extinction session
8
heroin self-administration
8

Similar Publications

We have shown that environmental enrichment (EE) can effectively reduce reinstatement and facilitate true abstinence in animal models of drug use. Here, we investigated whether EE is effective against reinstatement of heroin seeking in long access (LA) model, which has been argued to capture the compulsive features of human drug addiction. We also explored the neurobiology by which EE produces its anti-drug addiction effects.

View Article and Find Full Text PDF

Self-administration of addictive substances like heroin can couple the rewarding/euphoric effects of the drug with drug-associated cues, and opioid cue reactivity contributes to relapse vulnerability in abstinent individuals recovering from an opioid use disorder (OUD). Opioids are reported to alter the intrinsic excitability of medium spiny neurons (MSNs) in the nucleus accumbens (NAc), a key brain reward region linked to drug seeking, but how opioids alter NAc MSN neuronal excitability and the impact of altered MSN excitability on relapse-like opioid seeking remain unclear. Here, we discovered that self-administered, but not experimenter-administered, heroin reduced NAc protein levels of the voltage-gated sodium channel auxiliary subunit, SCN1b, in male and female rats.

View Article and Find Full Text PDF

Disrupting heroin-associated memory reconsolidation through actin polymerization inhibition in the nucleus accumbens core.

Int J Neuropsychopharmacol

December 2024

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

Background: Understanding drug addiction as a disorder of maladaptive learning, where drug-associated or environmental cues trigger drug cravings and seeking, is crucial for developing effective treatments. Actin polymerization, a biochemical process, plays a crucial role in drug-related memory formation, particularly evident in conditioned place preference paradigms involving drugs like morphine and methamphetamine. However, the role of actin polymerization in the reconsolidation of heroin-associated memories remains understudied.

View Article and Find Full Text PDF

Rationale: The opioid crisis persists despite availability of effective opioid agonist maintenance treatments (methadone and buprenorphine). Thus, there is a need to advance novel medications for the treatment of opioid use and relapse.

Objectives: We recently modeled maintenance treatment in rats and found that chronic delivery of buprenorphine and the mu opioid receptor (MOR) partial agonist TRV130 decreases relapse to oxycodone seeking and taking.

View Article and Find Full Text PDF

Corticostriatal projection neurons from prelimbic medial prefrontal cortex to the nucleus accumbens core critically regulate drug-seeking behaviors, yet the underlying encoding dynamics whereby these neurons contribute to drug seeking remain elusive. Here we use two-photon calcium imaging to visualize the activity of corticostriatal neurons in mice from the onset of heroin use to relapse. We find that the activity of these neurons is highly heterogeneous during heroin self-administration and seeking, with at least 8 distinct neuronal ensembles that display both excitatory and inhibitory encoding dynamics.

View Article and Find Full Text PDF