98%
921
2 minutes
20
Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b09970 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, and Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China.
Despite the widespread utility of transition metal-catalyzed cross-couplings in organic synthesis, the coupling of unactivated alkyl electrophiles remains challenging due to sluggish oxidative addition and competing side reactions. Here, we describe a general and practical copper-catalyzed radical deoxyalkynylation of α-unfunctionalized alcohols through a synergistic combination of Barton-McCombie deoxygenation and copper-catalyzed radical cross-coupling. Key to the success of this method lies in not only the development of rigid anionic multiple N,N,N-ligand to exert remarkable selectivity of highly reactive unactivated alkyl radicals, but also the selection of one suitable oxidant to suppress Glaser homocoupling and other side products.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Flammulina velutipes is a major edible fungus with abundant yield and mature industrial production technology. Its main functional component, Flammulina velutipes polysaccharide, has huge development and utilization value. In light of the current uncertainty regarding the mechanisms by which Flammulina velutipes polysaccharides prevent colonic cell pyroptosis, the mechanisms of ultrasound-extracted Flammulina velutipes polysaccharide (FVPU2) in inhibiting colonic cell pyroptosis in mice were investigated, and compared with Flammulina velutipes polysaccharide extracted via hot water extraction (FVPH2).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
Compared with efficient anodic luminol electrochemiluminescence (ECL), the disadvantage of cathodic ECL is that luminol cannot be electrochemically oxidized in a direct manner, and the conversion efficiency of dissolved oxygen (DO) as the coreactant to reactive oxygen species (ROS) is poor, which limits its application. Therefore, it is necessary to develop a functional catalyst suitable for the luminol-DO ECL system to directly trigger cathodic ECL. In this study, a coordination microenvironment modulation strategy was proposed.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
September 2025
Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany.
In the structure of the title compound, CHN·CHNOS·CHNOS, the central pyridinic rings are approximately coplanar to the benzo-thia-zole moieties. The phenyl groups are appreciably angled to the central rings [inter-planar angles of 57.30 (3)° for the anion and 79.
View Article and Find Full Text PDF