98%
921
2 minutes
20
Unlabelled: Tracking of degradation of hydrogels-based biomaterials in vivo is very important for rational design of tissue engineering scaffolds that act as delivery carriers for bioactive factors. During the process of tissue development, an ideal scaffold should remodel at a rate matching with scaffold degradation. To reduce amount of animals sacrificed, non-invasive in vivo imaging of biomaterials is required which relies on using of biocompatible and in situ gel forming compounds carrying suitable imaging agents. In this study we developed a method of in situ fabrication of fluorescently labeled and injectable hyaluronan (HA) hydrogel based on one pot sequential use of Michael addition and thiol-disulfide exchange reactions for the macromolecules labeling and cross-linking respectively. Hydrogels with different content of HA were prepared and their enzymatic degradation was followed in vitro and in vivo using fluorescence multispectral imaging. First, we confirmed that the absorbance of the matrix-linked near-IR fluorescent IRDye® 800CW agent released due to the matrix enzymatic degradation in vitro matched the amount of the degraded hydrogel measured by classical gravimetric method. Secondly, the rate of degradation was inversely proportional to the hydrogel concentration and this structure-degradation relationship was similar for both in vitro and in vivo studies. It implies that the degradation of this disulfide cross-linked hyaluronan hydrogel in vivo can be predicted basing on the results of its in vitro degradation studies. The compliance of in vitro and in vivo methods is also promising for the future development of predictive in vitro tissue engineering models.
Statement Of Significance: The need for engineered hydrogel scaffolds that deliver bioactive factors to endogenous progenitor cells in vivo via gradual matrix resorption and thus facilitate tissue regeneration is increasing with the aging population. Importantly, scaffold should degrade at a modest rate that will not be too fast to support tissue growth nor too slow to provide space for tissue development. The present work is devoted to longitudinal tracking of a hydrogel material in vivo from the time of its implantation to the time of complete resorption without sacrificing animals. The method demonstrates correlation of resorption rates in vivo and in vitro for hydrogels with varied structural parameters. It opens the possibility to develop predictive in vitro models for tissue engineered scaffolds and reduce animal studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2015.11.053 | DOI Listing |
Antioxid Redox Signal
September 2025
Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis. The relationship between SIC and protein acetylation, particularly the balance between acetylation and deacetylation in cardiomyocyte subcellular structures, as well as how nuclear-mitochondrial coordination maintains standard antioxidant stress capacity, remains unclear. This study focused on exploring the nuclear-mitochondrial regulatory mechanisms formed by the interplay of Sirtuin 3 (SIRT3) and Forkhead box O3a (FOXO3a).
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
D-BAUG, ETH Zurich, Zürich 8093, Switzerland.
Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo 13083-862, Brazil.
Violacein exhibits antitumor activity, indicating potential for future clinical application. However, an efficient delivery system is required for the clinical use of this hydrophobic compound. Effective delivery systems can enhance the solubility and bioavailability of hydrophobic compounds like violacein, facilitating its clinical application for antitumor therapy.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
Acute Myeloid Leukemia (AML) is a heterogeneous hematological malignancy with an altered bone marrow microenvironment sheltering leukemic stem cells (LSCs). LSCs are characterized as self-renewing and highly proliferative cancer stem cells and accumulate abnormal genetic and epigenetic factors contributing to their uncontrolled proliferation. Chromosomal translocation t(9;11)(p22;q23) forms fusion oncoprotein, MLL-AF9, and regulates the transcription factor, C-Myb, which is highly expressed in AML.
View Article and Find Full Text PDFCancer Biol Med
September 2025
Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, China.
Objective: Osimertinib (OSI) therapy, a cornerstone in treating non-small cell lung cancer (NSCLC), has been severely limited by rapidly developing acquired resistance. Inhibition of bypass activation using a combination strategy holds promise in overcoming this resistance. Biguanides, with excellent anti-tumor effects, have recently attracted much attention for this potential.
View Article and Find Full Text PDF