Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657018PMC
http://dx.doi.org/10.1038/srep17081DOI Listing

Publication Analysis

Top Keywords

triboelectric generator
16
wearable fall
12
integrated sensors
8
energy devices
8
energy supply
8
fall detection
8
detection system
8
conductive nylon
8
human body
8
body motions
8

Similar Publications

Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.

View Article and Find Full Text PDF

In this study, porous polysiloxane (PS)/multi-walled carbon nanotube (MWCNT) nanocomposite films were developed as high-performance triboelectric layers for flexible triboelectric nanogenerators (TENGs). TENGs convert mechanical motion into electricity and offer a promising solution for self-powered electronic systems. The nanocomposites were fabricated using a doctor blading method, and porosity was introduced a simple, scalable salt-leaching technique.

View Article and Find Full Text PDF

This study presents a novel photovoltaic triboelectric nanogenerator (PTENG) that operates on sliding contacts between n-type (gallium arsenide) GaAs and metal electrodes in the presence of periodic light illumination, which offers harvesting energy synergistically by integrating both photovoltaic and triboelectric effects to enhance the energy output. Using an in-house built test setup with provision of laser illumination, the open-circuit voltage () and short-circuit current () were measured for the n-GaAs semiconductors with different metal contacts (Al and Cu). Under both laser light (630 nm) and without laser light conditions, n-GaAs with aluminum contacts exhibited the highest and values, reaching up to 11.

View Article and Find Full Text PDF

Solid-liquid triboelectric nanogenerators (SL-TENGs) have attracted attention for use in water resource collection. However, traditional methods limit improvements in the surface energy density of the friction layer because of insufficient precision. This study used femtosecond laser technology to create three-dimensional bionic structures on polyvinylidene fluoride (PVDF) films.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) are typically constrained to operate below 200 °C due to the thermionic emission effect and material degradation at high temperatures. Herein, high-temperature-resistant fluorinated polyimide nanofibers (4,4'-(hexafluoroisopropylidene) diphthalic anhydride-4,4'-oxidianiline/2,2″-bis(trifluoromethyl)benzidine, 6FDA-ODA/TFDB) were designed to mitigate the thermionic emission effect through the introduction of trifluoromethyl (-CF) groups. 6FDA-ODA/TFDB nanofibers exhibited a fine fiber structure and a large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, which enhanced its effective contact area and maintained more localized states for charge transfer.

View Article and Find Full Text PDF