98%
921
2 minutes
20
The monocytic lineage cells in brain, generally speaking brain macrophage and/or microglia show some dissimilar distribution patterns and disagreement regarding their origin and onset in brain. Here, we investigated its onset and distribution/colonization pattern in normal brain with development. Primarily, early and late embryonic stages, neonate and adult brains were sectioned for routine H/E staining; a modified silver-gold staining was used for discriminating monocytic lineage cells in brain; and TEM to deliver ultramicroscopic details of these cells in brain. Immunofluorescence study with CD11b marker revealed the distribution of active microglia/macrophage like cells. Overall, in early embryonic day 12, the band of densely stained cells are found at the margin of developing ventricles and cells sprout from there dispersed towards the outer edge. However, with development, this band shrunk and the dispersion trend decreased. The deeply stained macrophage like cell population migration from outer cortex to ventricle observed highest in late embryonic days, continued with decreased amount in neonates and settled down in adult. In adult, a few blood borne macrophage like cells were observed through the vascular margins. TEM study depicted less distinguishable features of cells in brain in early embryo, whereas from late embryo to adult different neuroglial populations and microglia/macrophages showed distinctive features and organization in brain. CD11b expression showed some similarity, though not fully, with the distribution pattern depending on the differentiation/activation status of these macrophage lineage cells. This study provides some generalized spatial and temporal pattern of macrophage/microglia distribution in rat brain, and further indicates some intrigue areas that need to be addressed.
Download full-text PDF |
Source |
---|
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li
Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
Gut-derived metabolites are essential for liver fibrogenesis. The aim of this study was to determine the alteration of indole-3-propionic acid (IPA), a crucial tryptophan metabolite, in liver fibrosis and delineate the roles of enterogenic IPA in fibrogenesis. In the present study, metabolomics assays focused on tryptophan metabolism were applied to explore the decreased levels of IPA in the feces and serum of cirrhotic patients, as well as in the feces and portal vein serum of fibrotic mice.
View Article and Find Full Text PDFCommun Biol
September 2025
Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.
View Article and Find Full Text PDF