Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exposure to nerve agents results in severe seizures or status epilepticus caused by the inhibition of acetylcholinesterase, a critical enzyme that breaks down acetylcholine to terminate neurotransmission. Prolonged seizures cause brain damage and can lead to long-term consequences. Current countermeasures are only modestly effective against the brain damage supporting interest in the evaluation of new and efficacious therapies. The nutraceutical alpha-linolenic acid (LIN) is an essential omega-3 polyunsaturated fatty acid that has a wide safety margin. Previous work showed that a single intravenous injection of alpha-linolenic acid (500 nmol/kg) administered before or after soman significantly protected against soman-induced brain damage when analyzed 24h after exposure. Here, we show that administration of three intravenous injections of alpha-linolenic acid over a 7 day period after soman significantly improved motor performance on the rotarod, enhanced memory retention, exerted an anti-depressant-like activity and increased animal survival. This dosing schedule significantly reduced soman-induced neuronal degeneration in four major vulnerable brain regions up to 21 days. Taken together, alpha-linolenic acid reduces the profound behavioral deficits induced by soman possibly by decreasing neuronal cell death, and increases animal survival.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2015.09.006DOI Listing

Publication Analysis

Top Keywords

alpha-linolenic acid
20
brain damage
12
nutraceutical alpha-linolenic
8
animal survival
8
acid
6
alpha-linolenic
5
repeated systemic
4
systemic administration
4
administration nutraceutical
4
acid exerts
4

Similar Publications

Plant sterol ester of α-linolenic acid protects against ferroptosis in metabolic dysfunction-associated fatty liver disease via activating the Nrf2 signaling pathway.

J Nutr Biochem

September 2025

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, PR CHINA

Increasing evidence indicates that ferroptosis contributes to the occurrence and development of metabolic dysfunction-associated fatty liver disease (MAFLD). This study aimed to investigate the improvement effect of plant sterol ester of α-linolenic acid (PS-ALA) on ferroptosis in hepatocytes and further elucidate the underlying molecular mechanism, focusing on the regulation of Nrf2 signaling. We found that PS-ALA ameliorated liver iron overload and reduced ROS generation and lipid peroxides (MDA and 4-HNE) production both in mice fed a high-fat diet and HepG2 cells induced by oleic acid/erastin.

View Article and Find Full Text PDF

This study evaluated the effects of raising systems and diet types on growth performance, carcass characteristics, pH content, fatty acid profiles and meat quality in Japanese quail (Coturnix japonica). A total of 608 seven-day-old quail chicks were arranged in a 2 × 2 factorial design, with two raising systems (cage and free-range) and two diet types (conventional and organic). The experiment employed a completely randomized design with four treatments, four replicates per treatment, and 38 birds per replicate.

View Article and Find Full Text PDF

Background: Diabetic nephropathy (DN), a serious diabetic complication, currently has limited treatment options. Yulan Jiangtang capsules (YL) are a clinically approved traditional Chinese medicine formula for glycemic control and diabetes-related complications. Nevertheless, the underlying mechanisms of their therapeutic effects remain incompletely elucidated.

View Article and Find Full Text PDF

Background: Early postnatal undernutrition, leading to impaired growth and low body weight, has been associated with enduring metabolic alterations that may persist into adulthood. We proposed that plant-based ω-3 fatty acids, as in maternal supplementation, attenuate metabolic alterations induced by postnatal dietary restriction, such as glucose disturbances and oxidative stress.

Methods: To test this, we investigated the effects of maternal supplementation with two distinct doses of Chia Oil (ChO) (2.

View Article and Find Full Text PDF

Characterization of Bitter Off-Taste Stimuli in Sunflower Press Cake Using the Sensomics Approach.

J Agric Food Chem

September 2025

Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany.

The Sensomics approach, including activity-guided fractionation and taste dilution analysis, was employed to identify the key compounds responsible for the bitter off-taste of sunflower press cake. A combination of liquid chromatography-tandem mass spectrometry, liquid chromatography-time-of-flight-mass spectrometry, one-/two-dimensional nuclear magnetic resonance spectroscopy, and dose-overthreshold factor calculation led to the identification of 9,12,13-trihydroxyoctadec-10-enoic acid, 9,10,11-trihydroxyoctadec-12-enoic acid, 11,12,13-trihydroxyoctadec-9-enoic acid, (10,12)-9-hydroxyoctadeca-10,12-dienoic acid, (10,12)-9-hydroxyoctadeca-10,12-dienoic acid, (9,11)-13-hydroxyoctadeca-9,11-dienoic acid, (9,11)-13-hydroxyoctadeca-9,11-dienoic acid, (9,11)-13-oxooctadeca-9,11-dienoic acid, α-linolenic acid, linoleic acid, oleic acid, 2-hydroxyoleic acid, palmitic acid, stearic acid, and novel pinocarveol β-d-apiofuranosyl-(1→6)-β-d-(4--caffeoyl) glucopyranoside as contributors to the bitterness of sunflower press cake. The findings provide valuable insights into the sensory challenges associated with using sunflower press cake in food applications and offer pathways to enhance its palatability and potential as a sustainable protein alternative to meet future protein demands.

View Article and Find Full Text PDF