Alcohol Clin Exp Res (Hoboken)
August 2025
Background: Acetaldehyde, an immediate ethanol metabolite, mediates many ethanol-induced behavioral effects and is both psychoactive and toxic to animals and humans. Monitoring the kinetics of acetaldehyde using rodent models of alcohol misuse is essential for understanding and managing ethanol-associated diseases. However, quantitation of acetaldehyde in biological specimens after alcohol consumption has been challenging due to its high volatility, relatively low concentrations, and strong reactivity toward biochemical molecules.
View Article and Find Full Text PDFAlcohol use disorder (AUD) affects millions of people worldwide, causing extensive morbidity and mortality with limited pharmacological treatments. The liver is considered as the principal site for the detoxification of ethanol metabolite, acetaldehyde (AcH), by aldehyde dehydrogenase 2 (ALDH2) and as a target for AUD treatment, however, our recent data indicate that the liver only plays a partial role in clearing systemic AcH. Here we show that a liver-gut axis, rather than liver alone, synergistically drives systemic AcH clearance and voluntary alcohol drinking.
View Article and Find Full Text PDFThe liver can fully regenerate after partial resection, and its underlying mechanisms have been extensively studied. The liver can also rapidly regenerate after injury, with most studies focusing on hepatocyte proliferation; however, how hepatic necrotic lesions during acute or chronic liver diseases are eliminated and repaired remains obscure. Here, we demonstrate that monocyte-derived macrophages (MoMFs) were rapidly recruited to and encapsulated necrotic areas during immune-mediated liver injury and that this feature was essential in repairing necrotic lesions.
View Article and Find Full Text PDFExp Biol Med (Maywood)
April 2023
Hyperexcitability is a major mechanism implicated in several neuropsychiatric disorders, such as organophosphate-induced status epilepticus (SE), primary epilepsy, stroke, spinal cord injury, traumatic brain injury, schizophrenia, and autism spectrum disorders. Underlying mechanisms are diverse, but a functional impairment and loss of GABAergic inhibitory neurons are common features in many of these disorders. While novel therapies abound to correct for the loss of GABAergic inhibitory neurons, it has been difficult at best to improve the activities of daily living for the majority of patients.
View Article and Find Full Text PDFObjective: The current treatment for hepatocellular carcinoma (HCC) to block angiogenesis and immunosuppression provides some benefits only for a subset of patients with HCC, thus optimised therapeutic regimens are unmet needs, which require a thorough understanding of the underlying mechanisms by which tumour cells orchestrate an inflamed tumour microenvironment with significant myeloid cell infiltration. MicroRNA-223 (miR-223) is highly expressed in myeloid cells but its role in regulating tumour microenvironment remains unknown.
Design: Wild-type and miR-223 knockout mice were subjected to two mouse models of inflammation-associated HCC induced by injection of diethylnitrosamine (DEN) or orthotopic HCC cell implantation in chronic carbon tetrachloride (CCl)-treated mice.
Aging is an intricate process characterized by multiple hallmarks including stem cell exhaustion, genome instability, epigenome alteration, impaired proteostasis, and cellular senescence. Whereas each of these traits is detrimental at the cellular level, it remains unclear how they are interconnected to cause systemic organ deterioration. Here we show that abrogating Brap, a BRCA1-associated protein essential for neurogenesis, results in persistent DNA double-strand breaks and elevation of histone H2A mono- and poly-ubiquitination (H2Aub).
View Article and Find Full Text PDFThe gene encodes a scaffold protein essential for brain development. Although biallelic loss of function (LOF) causes microcephaly with profound mental retardation, missense mutations and copy number variations are associated with multiple neuropsychiatric disorders. However, the etiology of the diverse phenotypes resulting from aberrations remains elusive.
View Article and Find Full Text PDFTraumatic brain injury generated by blast may induce long-term neurological and psychiatric sequelae. We aimed to identify molecular, histopathological, and behavioral changes in rats 2 weeks after explosive-driven double-blast exposure. Rats received two 30-psi (~ 207-kPa) blasts 24 h apart or were handled identically without blast.
View Article and Find Full Text PDFTraumatic Brain Injury (TBI) affects approximately 2.5 million people in the United States, of which 80% are considered to be mild (mTBI). Previous studies have shown that cerebral glucose uptake and metabolism are altered after brain trauma and functional metabolic deficits observed following mTBI are associated with changes in cognitive performance.
View Article and Find Full Text PDFKetamine is a multimodal dissociative anesthetic, which provides powerful analgesia for victims with traumatic injury. However, the impact of ketamine administration in the peri-trauma period on the development of post-traumatic stress disorder (PTSD) remains controversial. Moreover, there is a major gap between preclinical and clinical studies because they utilize different doses and routes of ketamine administration.
View Article and Find Full Text PDFApproximately, 1.7 million Americans suffer a TBI annually and TBI is a major cause of death and disability. The majority of the TBI cases are of the mild type and while most patients recover completely from mild TBI (mTBI) about 10% result in persistent symptoms and some result in lifelong disability.
View Article and Find Full Text PDFα-Linolenic acid (ALA) is a nutraceutical found in vegetable products such as flax and walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB), brain-derived neurotrophic factor (BDNF), a major neuroprotective protein in brain, and downstream signaling pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review, we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman.
View Article and Find Full Text PDFExposure to nerve agents results in severe seizures or status epilepticus caused by the inhibition of acetylcholinesterase, a critical enzyme that breaks down acetylcholine to terminate neurotransmission. Prolonged seizures cause brain damage and can lead to long-term consequences. Current countermeasures are only modestly effective against the brain damage supporting interest in the evaluation of new and efficacious therapies.
View Article and Find Full Text PDFExposure to organophosphorous (OP) nerve agents such as soman inhibits the critical enzyme acetylcholinesterase (AChE) leading to excessive acetylcholine accumulation in synapses, resulting in cholinergic crisis, status epilepticus and brain damage in survivors. The hippocampus is profoundly damaged after soman exposure leading to long-term memory deficits. We have previously shown that treatment with three sequential doses of alpha-linolenic acid, an essential omega-3 polyunsaturated fatty acid, increases brain plasticity in naïve animals.
View Article and Find Full Text PDFOrganophosphorus (OP) nerve agents are deadly chemical weapons that pose an alarming threat to military and civilian populations. The irreversible inhibition of the critical cholinergic degradative enzyme acetylcholinesterase (AChE) by OP nerve agents leads to cholinergic crisis. Resulting excessive synaptic acetylcholine levels leads to status epilepticus that, in turn, results in brain damage.
View Article and Find Full Text PDFNeurotoxicology
October 2012
Nerve agents are deadly threats to military and civilian populations around the world. Nerve agents cause toxicity to peripheral and central sites through the irreversible inhibition of acetylcholinesterase, the enzyme that metabolizes acetylcholine. Excessive acetylcholine accumulation in synapses results in status epilepticus in the central nervous system.
View Article and Find Full Text PDFDose Response
November 2011
Synaptic function is critical for the brain to process experiences dictated by the environment requiring change over the lifetime of the organism. Experience-driven adaptation requires that receptors, signal transduction pathways, transcription and translational mechanisms within neurons respond rapidly over its lifetime. Adaptive responses communicated through the rapid firing of neurons are dependent upon the integrity and function of synapses.
View Article and Find Full Text PDFOmega-3 polyunsaturated fatty acids are known to have therapeutic potential in several neurological and psychiatric disorders. However, the molecular mechanisms of action underlying these effects are not well elucidated. We previously showed that alpha-linolenic acid (ALA) reduced ischemic brain damage after a single treatment.
View Article and Find Full Text PDFTo determine the epigenetic events associated with NMDA receptor-mediated activation of brain-derived neurotrophic factor gene (Bdnf) promoter 1 by hippocampal neurons in culture, we screened 12 loci across 4.5 kb of genomic DNA 5' of the transcription start site (TSS) of rat Bdnf for specific changes in histone modification and transcription factor binding following NMDA receptor stimulation. Chromatin immunoprecipitation (ChIP) assays showed that NMDA receptor stimulation produced a durable, time-dependent decrease in histone H3 at lysine 9 dimethylation (H3K9me2), within 3 h after NMDA treatment across multiple loci.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
October 2008
A variety of sublethal or stressful stimuli induce a phenomenon in the brain known as tolerance, an adaptive response that protects the brain against the same stress, or against a different stress (cross-tolerance). Understanding the molecular mechanisms of brain preconditioning holds promise in developing innovative therapies to prevent and treat neurodegenerative disorders, particularly ischemic stroke. Many of the detailed steps involved in tolerance and cross-tolerance are unknown.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF), via activation of TrkB receptors, mediates vital physiological functions in the brain, ranging from neuronal survival to synaptic plasticity, and has been implicated in the pathophysiology of neurodegenerative disorders. Although transcriptional regulation of the BDNF gene (Bdnf) has been extensively studied, much remains to be understood. We discovered a sequence within Bdnf promoter 4 that binds the basic helix-loop-helix protein BHLHB2 and is a target for BHLHB2-mediated transcriptional repression.
View Article and Find Full Text PDFThe brain developed adaptive mechanisms in the face of changing environments and stresses imposed on the nervous system. The addition of glutamate as the major excitatory amino acid neurotransmitter to the brain's complement of amino acids and peptides dictated a coordinated transcriptional and translational program to meet the demands of excitatory neurotransmission. One such program is the ability of neurons to sustain and maintain their survival given the nature of glutamate-mediated receptor activation.
View Article and Find Full Text PDFAlcohol Clin Exp Res
September 2006
Background: Chronic alcohol drinking accelerates the progression of liver disease in patients with hepatitis viral infection; however, the underlying mechanisms are not fully understood.
Methods: Here, we examined the effects of chronic ethanol feeding on hepatic natural killer (NK) cells and liver injury in 2 murine models of liver injury: injection of synthetic double-stranded RNA polyinosinic-polycytidylic acid (poly I:C), which mimics viral infection, and infection with murine cytomegalovirus (MCMV). Mice were fed the Lieber-DeCarli liquid diet containing 5% (vol/vol) ethanol for 8 weeks, resulting in a significant decrease in the percentage and total number of NK cells in the liver.
Interleukin-22 (IL-22) is a recently identified T cell-derived cytokine whose biological significance remains obscure. Previously, we have shown that IL-22 plays a protective role in T cell-mediated hepatitis induced by Concanavalin A (Con A), acting as a survival factor for hepatocytes. In the present paper, we demonstrate that hydrodynamic gene delivery of IL-22 cDNA driven either by a liver-specific albumin promoter or a human cytomegalovirus (CMV) promoter results in IL-22 protein expression, STAT3 activation, and expression of several anti-apoptotic proteins, including Bcl-xL, Bcl-2, and Mcl-1 in the liver.
View Article and Find Full Text PDFFatty liver, formerly associated predominantly with excessive alcohol intake, is now also recognized as a complication of obesity and an important precursor state to more severe forms of liver pathology including ischemia/reperfusion injury. No standard protocol for treating fatty liver exists at this time. We therefore examined the effects of 10 days of interleukin 6 (IL-6) injection in 3 murine models of fatty liver: leptin deficient ob/ob mice, ethanol-fed mice, and mice fed a high-fat diet.
View Article and Find Full Text PDF