98%
921
2 minutes
20
Traumatic Brain Injury (TBI) affects approximately 2.5 million people in the United States, of which 80% are considered to be mild (mTBI). Previous studies have shown that cerebral glucose uptake and metabolism are altered after brain trauma and functional metabolic deficits observed following mTBI are associated with changes in cognitive performance. Imaging of glucose uptake using [F] Fluorodeoxyglucose (FDG) based Positron Emission Tomography (PET) with anesthesia during the uptake period demonstrated limited variability in results, but may have depressed uptake. Anesthesia has been found to interfere with blood glucose levels, and hence, FDG uptake. Conversely, forced cognitive testing during uptake may increase glucose demand in targeted regions, such as hippocampus, allowing for better differentiation of outcomes. Therefore, the objective of this study was to investigate the influence of a directed cognitive function task during the FDG uptake period on uptake measurements both in naïve rats and at 2 days after mild lateral fluid percussion (mLFP) TBI. Adult male Sprague Dawley rats underwent FDG uptake with either cognitive testing with the Novel Object Recognition (NOR) test or No Novel Object (NNO), followed by PET scans at baseline (prior to injury) and at 2days post mLFP. At baseline, FDG uptake in the right hippocampus was elevated in rats completing the NOR in comparison to the NNO (control group). Further, the NNO group rats demonstrated a greater fold change in the FDG uptake between baseline and post injury scans than the NOR group. Overall, these data suggest that cognitive activity during FDG uptake affects the regional uptake pattern in the brain, increasing uptake at baseline and suppressing the effects of injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401244 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2018.12.033 | DOI Listing |
J Cereb Blood Flow Metab
September 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
Preclinical PET studies offer the opportunity to elucidate molecular mechanisms underlying early neurodevelopment with minimal invasiveness. We demonstrated the feasibility of fetal brain PET in four pregnant rats ( = 42 fetuses). [F]FDG uptake in rat fetuses was readily visualized by PET imaging.
View Article and Find Full Text PDFJ Gastrointest Surg
September 2025
Department of Upper Gastrointestinal and Hepatobiliary Surgery, Royal Prince Alfred Hospital, Sydney, Australia; RPA Institute of Academic Surgery, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia; Surgical Outcomes Research Centre (SOuRCe), Sydney, Australia.
Background: 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is currently widely used in staging and re-staging oesophageal cancer after neoadjuvant therapy. The maximal standardized uptake value (SUVmax) is a reproducible parameter that may predict survival. This study aimed to determine the prognostic significance of SUVmax and the change in SUVmax after neoadjuvant treatment (ΔSUVmax) on overall and disease-free survival.
View Article and Find Full Text PDFNucl Med Biol
September 2025
Department of Nuclear Medicine, Hannover Medical School, Germany. Electronic address:
Purpose: The liver-brain axis regulates metabolic homeostasis, with glucose metabolism playing a key role. Liver dysfunction, such as fibrosis, may impact brain metabolism and consequently, brain function. Positron emission tomography (PET) imaging provides a non-invasive approach to study glucose metabolism in both organs.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, CHUV/UNIL, 1011, Lausanne, Switzerland.
Background: Immunotherapy is a mainstay in the treatment of patients with advanced melanoma. Yet, resistance mechanisms exist, and tumour-associated macrophages (TAMs), particularly the M2-like phenotype, are associated with poorer outcomes, with CD206 serving as their specific marker. We present the first human SPECT/CT study to visualize CD206 + TAMs in patients undergoing immunotherapy and compare the findings to clinical outcomes (NCT04663126).
View Article and Find Full Text PDFMol Imaging Radionucl Ther
September 2025
University Clinical Center of Serbia, Center for Nuclear Medicine with PET, Belgrade, Serbia.
Fluorine-fluorocholine (F-FCH) is a radiopharmaceutical used in primary hyperparathyroidism. The data about its utility in malignancies other than prostate and hepatocellular carcinoma is limited. We present the case of a patient who was referred for F-FCH positron emission tomography/computed tomography (PET/CT) due to the persistently elevated parathormone and calcium levels following total thyroidectomy with left lower parathyroidectomy for parathyroid carcinoma (PTC).
View Article and Find Full Text PDF